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Abstract Flow in a stably stratified environment is characterized by anisotropic and intermittent
turbulence and wavelike motions of varying amplitudes and periods. Understanding turbulence
intermittency and wave-turbulence interactions in a stably stratified flow remains a challenging issue in
geosciences including planetary atmospheres and oceans. The stable atmospheric boundary layer (SABL)
commonly occurs when the ground surface is cooled by longwave radiation emission such as at night
over land surfaces, or even daytime over snow and ice surfaces, and when warm air is advected over cold
surfaces. Intermittent turbulence intensification in the SABL impacts human activities and weather
variability, yet it cannot be generated in state-of-the-art numerical forecast models. This failure is mainly
due to a lack of understanding of the physical mechanisms for seemingly random turbulence generation
in a stably stratified flow, in which wave-turbulence interaction is a potential mechanism for turbulence
intermittency. A workshop on wave-turbulence interactions in the SABL addressed the current
understanding and challenges of wave-turbulence interactions and the role of wavelike motions in
contributing to anisotropic and intermittent turbulence from the perspectives of theory, observations, and
numerical parameterization. There have been a number of reviews on waves, and a few on turbulence in
stably stratified flows, but not much on wave-turbulence interactions. This review focuses on the nocturnal
SABL; however, the discussions here on intermittent turbulence and wave-turbulence interactions in stably
stratified flows underscore important issues in stably stratified geophysical dynamics in general.

1. Introduction
Turbulence intermittency is a common phenomenon in stably stratified geophysical fluids, such as the stable
atmospheric boundary layer (SABL), the upper atmosphere [e.g., Fritts and Alexander, 2003], the oceans [e.g.,
Seuront et al., 1996], in clouds [e.g., Siebert et al., 2010], and even the solar wind [e.g., Sorriso-Valvo et al., 1999;
Pagel and Balogh, 2001; Strumik and Macek, 2008]; however, it is poorly understood. The depth of the SABL
usually varies from O(10 m) to O(100 m). Intermittency of turbulence describes turbulence variability [Frisch,
1995; Ditlevsen, 2004]. Most often the variability refers to turbulence intensity such as temporal and spatial
appearance of turbulence patches, which is also called global intermittency [Mahrt, 1989; Vindel et al., 2008].
Sometimes the variability refers to intermittent appearance of turbulence eddies of various sizes, which is also
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called small-scale intermittency. The latter can be described by classical turbulence similarity theories, but not
the former, which is the focus of this review.

Accurate numerical prediction of intermittent turbulent events in the SABL is critically important for atmo-
spheric momentum, energy, and pollutant transport even though the SABL is often considered to be
“quiescent” and less critical for operational atmospheric models compared with high-impact weather associ-
ated with strong winds and heavy precipitation. Fog and frost formation is strongly dependent on accurate
predictions of intermittent heat transport near the surface. High concentrations of pollutants can be trapped
near the ground surface and vented out only through intermittent turbulent events in the SABL [e.g., Deng
et al., 2004; Stauffer et al., 2009] in contrast to the daytime atmospheric boundary layer (ABL) when posi-
tive buoyancy from the heated ground drives continuous turbulent transport. Most numerical models fail to
capture intermittent turbulent events in the light-wind SABL and encounter the so-called runaway cooling
problem [e.g., Beljaars, 2011]. To avoid the runaway cooling problem, turbulent mixing in numerical models
is commonly enhanced intentionally without any physical basis, leading to a warm temperature bias. Inter-
mittent turbulence is not unique to the SABL; for example, it has been reported in the ocean and galactic
interstellar medium [Gibson, 1991; Ruzmaikin et al., 1995].

The nature of these intermittent mixing events in the SABL is not well understood, but they seem to be
generated by various nonturbulent submeso motions, which fall between the largest turbulence eddy scale
(∼O(100 m)) and the smallest meso-gamma scale (∼2 km) [Mahrt, 2009]. Submeso motions may have vari-
ous structures, such as steps, ramps, pulses, waves, or complex signatures that cannot be approximated by
a simple shape [Mahrt, 2010a; Belušić and Mahrt, 2012; Kang et al., 2014]. These submeso motions may inter-
mittently create sufficient shear to produce local patches of turbulence in the SABL [e.g., Baklanov et al., 2011;
Mahrt et al., 2012]. The inability of numerical models to generate these submeso motions may be one of the
reasons for the runaway cooling problem even in state-of-the-art numerical models [Beare et al., 2006; Cuxart
et al., 2007; Svensson et al., 2011; Jimenez et al., 2012; Holtslag et al., 2013].

Among all the submeso motions, wavelike motions are ubiquitous in the SABL [Belušić and Mahrt, 2012].
Observations of these quasiperiodic motions suggest that they are associated with waves. In this review, we
classify these waves into two general types according to their generation mechanisms following the terminol-
ogy used by Carpenter et al. [2013]: buoyancy-generated buoyancy waves, such as internal gravity waves (IGWs)
(section 2.2.1), and transverse vorticity-generated vorticity waves (section 2.2.2), such as Kelvin-Helmholtz
(K-H) billows. Both types of waves, or combinations of them, appear periodically in time and space, and both
have periodic vorticity in the crosswind direction, i.e., transverse vorticity.

Turbulence intensification associated with wave evolution can be closely related to intermittent turbulence
[Finnigan, 1999]. Interactions between waves and turbulence are poorly understood in the SABL even though
the role of dynamic instabilities in turbulence generation has been theoretically investigated for decades,
especially for monochromatic IGWs [e.g., Staquet and Sommeria, 2002]. Propagating IGWs can at times effec-
tively redistribute a large amount of energy and momentum to modify local atmospheric conditions and
break down into spatially and temporally varying turbulence in the SABL [Einaudi et al., 1978; Sun et al., 2015].
Vorticity waves are a result of vorticity growth and lead to turbulence embedded in each transverse vorticity
roll, which appears as intermittent turbulence in space and time.

To emphasize nonlinear interactions between wave-turbulence interactions in the upper atmosphere,
McIntyre [2008] depicted that “there is no turbulence without waves.” Here we also recognize that waves and
turbulence are often correlated; i.e., one can lead to the other. An extensive knowledge of waves may guide us
to understand intermittent turbulence associated with wave-turbulence interactions although waves may be
only a fraction of submeso motions in the SABL that initiate intermittent turbulence in an otherwise calm flow.
Understanding turbulent intermittency requires understanding of not only how wave motions lead to turbu-
lence, which is often a focus in the literature, but also how turbulence affects waves and their environment
[e.g., Thorpe, 1987].

In this review, we focus on waves as submeso motions and review our current understanding of interac-
tions between waves and turbulence. To address theoretical, observational, and numerical issues related
to wave-turbulence interactions, a workshop, wave-turbulence interactions in the stable boundary layer
(WINABL) [Nappo et al., 2014], was organized by the National Center for Atmospheric Research (NCAR).
This review is based mainly on the workshop discussions and the relevant literature. The latest theoretical
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understanding of wave motions, turbulence, and wave-turbulence interactions relevant to intermittent
turbulence in the SABL is investigated in section 2. Observations of wave-turbulence interactions with
state-of-the-art observational technology are examined in section 3. Current parameterizations of waves and
wave-turbulence interactions in numerical models are discussed in section 4. Challenging issues in each area
are listed at the end of each section. Section 5 is a summary.

2. Review of Theories of Waves and Turbulence and Their Interactions in the SABL

There is a large body of theoretical analyses of waves in general and in the atmosphere and oceans in particular
[e.g., Whitham, 1974; Gossard and Hooke, 1975; Lighthill, 1978; Gill, 1982; Baines, 1995; Miropol’sky, 2001; Drazin,
2002; Bühler, 2009; Sutherland, 2010; Nappo, 2012]. Einaudi et al. [1978] reviewed work on tropospheric gravity
waves to that date. The review by Fritts and Alexander [2003] summarized advances in wave theories devel-
oped since the 1970s. Our emphasis here is on wave motions relevant to understanding wave-turbulence
interactions in the SABL, where the surface may play a significant role in wave and turbulence generation and
wave-turbulence interactions.

2.1. Linear Wave Theory and Nonlinearity
Most of our understanding of waves is based on linear wave theory, which has been described in various
textbooks [e.g., Gossard and Hooke, 1975; Nappo, 2012]. We list a few basic results of linear wave theory here
because they form a foundation for nonlinear wave theories and are often used for identifying waves in the
atmosphere. The linear theory is based on a first-order perturbation of a slowly changing background inviscid
flow. Accordingly, second-order terms such as products of the perturbations in the conservation of momen-
tum, heat, and mass are assumed to be negligible. The equation for linear waves is the Taylor-Goldstein (T-G)
equation. Its two-dimensional (2-D) form is

d2w̃
dz2

+ m2w̃ = 0, (1)
where

m2 = N2k2

(𝜔 − Uk)2
+ d2U

dz2

k
(𝜔 − Uk)

− k
Hs(𝜔 − Uk)

dU
dz

− 1
4H2

s

− k2. (2)

In the above equations, w̃ is the wave perturbation of the vertical velocity (w) as a function of height (z);
N = [(g∕𝜃0)𝜕𝜃∕𝜕z]1∕2 is the Brunt-Väisälä or buoyancy frequency, where 𝜃 and 𝜃0 are the potential tempera-
tures at z and at the surface, respectively, and g is the gravity constant; U is the mean background wind speed;
Hs = RT∕g is the scale height, where R and T are the universal gas constant for dry air and the mean atmo-
spheric temperature; k, m, and 𝜔 are the horizontal and the vertical wave numbers and the wave frequency,
respectively. Assuming constant wind and stratification, and z ≪ Hs, w(x, z, t) can be expressed as

w(x, z, t) = w̃(z)ei(kx−𝜔t)

= [Aeimz + Be−imz]ei(kx−𝜔t),
(3)

where A and B are unknown coefficients and t is the time. For real m, w varies sinusoidally with z; the cor-
responding wave is defined as an internal gravity wave, i.e., IGW. IGWs transport energy and horizontal
momentum vertically and horizontally [e.g., McIntyre, 1981] because w̃ and ũ are 180∘out of phase. For a com-
plex m, the wave amplitude decays exponentially with z; the wave is called an evanescent gravity wave. This
wave does not transport energy and momentum because w̃ and ũ are 90∘out of phase. Equation (2) describes
the relation between the wave frequency and wave number and is called the dispersion relation. The most
familiar dispersion relation is a simplified version of (2), with d2U∕dz2 = 0 and z ≪ Hs, i.e.,

(𝜔 − Uk)2 = N2k2

k2 + m2
. (4)

The assumption of linearity allows examination of the fundamental physics of wave propagation and condi-
tions that lead to wave instability when𝜔becomes complex. Because the amplitude of a linear IGW is assumed
to be vanishingly small, wave-wave interactions are precluded except in the case of mountain waves, for
which the amplitude is determined by the topography as a boundary condition. Linear wave theory ignores
turbulence and irreversible interactions between background flows and waves. Nonetheless, comparison
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Figure 1. Schematic of wave generation and wave types.

between the linear inviscid theory
and observed large-amplitude waves
suggests that linear wave theory ap-
proximately captures the important
physics of wave characteristics such
as wave periods, wavelengths, phase
velocity [Einaudi and Finnigan, 1993],
and variances of vertical wave motion
and temperature [Lilly and Lester,
1974]. The applicability of linear wave
theory can be extended to observed
nonlinear atmospheric waves if near-
real-time profiles of wind and tem-
perature are available [Dörnbrack and
Nappo, 1997]. Linear wave theory is
also valid for observed oceanic waves
[e.g., Bulatov and Vladimirov, 2010].

However, it fails to accurately predict wave growth rates and amplitudes of mountain waves even for waves
with small wave slopes [e.g., Smith, 1976].

Nonlinearity becomes important when wave amplitudes become significant with respect to the background
flow, resulting in a wave amplitude dependence of the wave dispersion relation [e.g., Zakharov et al., 1992].
Finite amplitudes also affect the symmetry between wave crests and troughs, wave breaking, and turbu-
lence. Although nonlinear wave mechanics are not always dominant during wave development, commonly
observed waves usually have amplitudes large enough such that nonlinearity is not negligible. Nonlinearity
is central to wave-wave, wave-turbulence, wave-vortex, and vortex-vortex interactions [e.g., Lelong and Riley,
1991; Bühler, 2010].

The common tools used to investigate nonlinearity are asymptotic approaches for weak nonlinearity [e.g.,
Zakharov et al., 1992], stochastic theories [e.g., Sukoriansky and Galperin, 2005; Sukoriansky et al., 2005; Galperin
and Sukoriansky, 2010], numerical methods, and laboratory experiments. One of the widely used asymp-
totic approaches is the WKB (Wentzel-Kramers-Brillouin) theory for describing wave-wave or wave-mean flow
interactions [e.g., Bretherton, 1966; Grisogono, 1994a; Sutherland, 2010]. The WKB theory at its lowest order is
referred to as linear ray tracing theory [Lighthill, 1978].

2.2. Wave Generation Mechanisms in the SABL
Wave generation mechanisms have been widely reported in the literature [e.g., Chimonas, 2002; Nappo, 2012].
In this review, we are mainly interested in waves that contribute to intermittent turbulence in the SABL; there-
fore, we do not consider the low-frequency inertia-gravity waves from geostrophic adjustment [e.g., Blumen,
1972; Fritts and Luo, 1992; Fritts and Alexander, 2003], atmospheric jets and fronts [e.g., Mastrantonio et al.,
1976; Chimonas and Grant, 1984; Plougonven and Zhang, 2014], or the spontaneous loss of balanced motions
[e.g., Vanneste, 2013], but we do consider higher-frequency waves resulting from these processes.

Based on the T-G equation, wave generation is related to two dominant background factors: buoyancy (the
first term on the right side of (2)) and vorticity (the third term on the right side of (2) is related to the
background vorticity, and the second term is to the vertical variation of vorticity). We first describe each
factor and commonly observed phenomena associated with each one in forming different kinds of waves as
schematically summarized in Figure 1. Then we describe their combined effects on wave generation.
2.2.1. Buoyancy Waves Generated by Displacement of Streamlines
In the absence of vorticity or shear, wave motions are generated by buoyancy. Propagating buoyancy waves
are IGWs and can be initiated by a vertical displacement of flow streamlines in a stratified laminar fluid. The
displacement may result from interactions between background flows and either physical obstacles, such
as topography, or disturbed density interfaces caused by bulging cold pools, density currents, or convective
systems (Figure 1). Through this displacement of streamlines, the energy of IGWs is initially transferred to
potential energy of the stably stratified density field, and the buoyancy force acts as a restoring force to gener-
ate a periodic energy exchange between potential and kinetic energy, resulting in wind speed oscillations. In
addition, temperature oscillates 90∘out of phase with w; thus, buoyancy waves do not transport heat but do
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transport momentum. Wave reflection by either temperature or wind ducts can trap buoyancy waves within
a layer, and they may oscillate for many cycles [e.g., Chimonas and Hines, 1986].

Mountain waves refer to all standing waves generated by flow over terrain [e.g., Long, 1953; Klemp and Lilly,
1975, 1978; Smith, 1989]. They often have only a few cycles and propagate upwind at the local wind speed
to maintain a fixed spatial relationship to the wave-generating topography. Based on linear theory, surface
obstacles and topographical features are expected to generate propagating waves when the advective time
required for the flow with a flow speed U to pass over the surface feature with a length scale L is longer than
the buoyancy time scale (L∕U > 1∕N) [e.g., Brown et al., 2003]. In linear theory, a steady IGW that propagates
in a nondissipative medium conserves its wave momentum flux [Eliassen and Palm, 1960].

Large-amplitude nonlinear waves, such as solitons (isolated bumps) or solitary waves (a train or packet of
waves that propagates with a unique wave envelope) [Jeffrey, 1989], are likely to be generated through strong
convergence between the background flow and density currents generated from sea/land breezes, convec-
tive storms, or strong slope flows [e.g., Christie et al., 1978; Smith, 1988; Christie, 1989; Rottman and Einaudi,
1993; Rees and Rottman, 1994; Rees et al., 1998; Sun et al., 2004; Helfrich and Melville, 2006; Koch et al., 2008]. A
solitary wave packet propagates without dispersing and losing its envelope as does a monochromatic wave
because of the exactly counteracting nonlinear terms in the equations of motion. In other words, the solitary
wave envelope is self-enforced through nonlinear steepening compensating for wave dispersion. The unique
energy balance can survive interactions between solitary waves passing through each other. As a result, a
solitary wave can travel a long distance without losing its wave envelope in a turbulent atmosphere. Solitary
waves demonstrate that nonlinear waves can be stable while the amplitude of each wave within the wave
packet varies rapidly with time. Solitary waves can be investigated via numerical models by imposing initial
disturbances in the flow. Various theories have been developed for atmospheric solitary waves with different
upper boundary conditions [Rottman and Einaudi, 1993; Rottman and Grimshaw, 2002].
2.2.2. Vorticity Waves Generated by Instabilities
Theoretically, waves can also exist when buoyancy, N, is negligible. Under this situation, wave instability is
responsible for the wave growth, which requires the imaginary part of 𝜔, i.e., 𝜔i ≠ 0. The fast growth of an
initial wave disturbance can quickly exceed the applicability of linear theory. Rapid growth of a small distur-
bance can develop to a periodic vortex sheet (vertically confined periodic transverse vortices) and to periodic
large transverse rolls [e.g., Drazin, 2002].

In contrast to IGWs, once a wave vorticity disturbance starts to grow, nonlinearity and viscosity are assumed.
As a result of turbulence generated by shear instability and the overturning of a stably stratified flow, sensible
heat flux is nonzero for vorticity waves. Vorticity wave growth as a result of wave momentum flux conver-
gence is at the expense of background flows, which is implicitly assumed in the wave instability theory. Wave
momentum divergence, for example, as a result of wave breaking [e.g., Nastrom and Eaton, 1993] can force
background flows to form vortical modes (horizontal pancake motions) [Riley and Lindborg, 2008].

The T-G equation approximately describes the motion prior to the onset of wave instabilities. Therefore, only
the conditions required for exponentially growing modes of a wave disturbance, not the subsequent evo-
lution of large-amplitude wave motions in the presence of turbulence, can be investigated through wave
instability [Case, 1960a, 1960b]. Wave formation is not guaranteed to occur via wave instability although the
most unstable wave mode has been observed to grow [Einaudi and Finnigan, 1993].

Based on the dispersion relation, the condition for a nonzero 𝜔i is determined by background atmospheric
conditions. The dispersion relation is dominated by either the vertical variation of the vorticity, d2U∕dz2, lead-
ing to Rayleigh waves with cat’s eye streamline patterns near a critical wave level (section 2.3.3), or by the
vorticity dU∕dz if d2U∕dz2 is negligible, leading to inflection point waves [e.g., Rayleigh, 1945; Gossard and
Hooke, 1975] (section 2.2.2.1). The two well-known wave instabilities in an inviscid flow are the inflection point
instability and the K-H instability when both shear and buoyancy are relevant for wave generation.
2.2.2.1. Inflection Point Instability
With d2U∕dz2 = 0, N = 0, and 1∕H2

s ∼ 0, the dispersion relation (2) becomes

𝜔

k
= U − 1

Hs(m2 + k2)
dU
dz

. (5)

With inflection point instability, the growth rate of a wave perturbation is proportional to the horizontal wave
number, so that shortest waves grow fastest and the wave growth does not peak at any wave number. The
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inflection point instability has also been extended in 3-D beyond its original definition to include cases with
N ≠ 0, e.g., for flow over canopy top [e.g., Hu et al., 2002; Finnigan et al., 2009; Belcher et al., 2012]. Inflection
point instability is commonly included in shear instability as shear is the active force in generating waves.
2.2.2.2. Kelvin-Helmholtz Modes and Shear Instability
The K-H modes follow directly from the Helmholtz profile, which consists of two half-spaces A below B with
a constant density (𝜌) and a fluid speed (u) in each space, i.e., 𝜌B and uB in the top half and 𝜌A and uA in the
bottom half [e.g., Nappo, 2012]. Based on the dynamic and kinematic conditions at the interface between A
and B, i.e., continuous pressure and continuous vertical mass flux, respectively, the balance of the disturbed
interface results in

𝜔

k
=

𝜌AuA + 𝜌BuB

𝜌A + 𝜌B
±
[

g
k

(𝜌A − 𝜌B)
(𝜌A + 𝜌B)

−
𝜌A𝜌B(uB − uA)2

(𝜌A + 𝜌B)2

]1∕2

. (6)

If 𝜔 is real, (6) can be considered as a dispersion relation of evanescent gravity waves propagating at the
interface and are called K-H waves. Strictly speaking, K-H waves are interfacial waves associated with the wind
speed and density jumps. In a continuously stratified layer, IGWs can be generated, which are also called K-H
waves in the literature. However, IGWs and evanescent gravity waves are significantly different in terms of
momentum and energy transfer [Einaudi et al., 1978].

If𝜔 is complex, the periodic disturbance grows exponentially with time, which is called K-H instability. Initially,
the interface has a vortex sheet with infinite wind shear when the velocity profile is discontinuous. As vortices
grow, the interface appears wavelike as turbulence quickly acts to expand the vortex sheet into a shear layer.
The disturbance grows nonlinearly into vortex rolls, which are also referred to as K-H billows as nonlinear waves
saturate [e.g., Smyth and Peltier, 1991; Fritts et al., 1996, 2011, 2012].
2.2.2.3. Wave Instabilities in Continuous Shear and Stably Stratified Flows
Unstable modes of the T-G equation with a wave disturbance, and wind and density profiles other than the
Helmholtz profile, have often been considered in the wave generation literature [e.g., Mastrantonio et al.,
1976]. Inflection-free wind profiles with stratified shear flows, for example, abrupt density variations, may also
lead to instability [Chimonas, 1974; Fua et al., 1976; Churilov, 2005, 2008]. In a layer of depth h with a con-
stant N and uniform wind shear between two zero-shear and zero-density gradient flow layers, an unstable
mode exists if 0<Ri<0.25 [e.g., Miles and Howard, 1964], where Ri = (g∕𝜃0)(𝜕𝜃∕𝜕z)∕(𝜕U∕𝜕z)2 is the gradient
Richardson number. The above result implies that the shear instability dominates the static or convective sta-
bility (buoyancy-related stability) when 0 < Ri < 0.25 or the critical Ri for wave instability is Ricr = 0.25. Using
Ricr, the wavelength of the maximum unstable mode is about 7.5 h [Turner, 1973]. Similarly, in a stably strat-
ified flow where shear reaches a maximum, i.e., d2U∕dz2 = 0, the shear instability also overcomes the stable
stratification, but the wave growth rate is affected by the stratification. Theoretically, the wave growth may
not always be suppressed by stable stratification [Howard and Maslowe, 1973].

Nonlinear development of primary waves can also generate secondary instability, leading to thin vortex
sheets on top of primary waves [e.g., Chimonas and Grant, 1984; Sutherland et al., 1994; Mashayek and Peltier,
2012; Fritts et al., 2013]. In the atmosphere, the wave growth rate can be affected by turbulent viscosity and
stratification [e.g., Brown, 1972]. As a result of turbulence associated with wave instability, the Ri criterion is
often used for diagnosing turbulence in general (more in section 2.3.6).
2.2.3. Wave-Wave Interactions
Most investigations of wave-wave interactions in the literature focus on inviscid small-amplitude wave activi-
ties associated with nonlinearity. McComas and Bretherton [1977] categorized the resonant wave interactions
of small wave amplitudes into three classes of nonlinear interacting resonant triads: induced diffusion, elastic
scattering, and parametric subharmonic instability (PSI). Among these classes, PSI has drawn special attention
in the literature as it explains wave energy transfer from long to short waves [Mied, 1976; Poulin et al., 2003;
Koudella and Staquet, 2006; Joubaud et al., 2012]. For sufficiently small amplitude waves, resonant interactions
are much more efficient at transferring energy among the waves of the triad than off-resonant interac-
tions. However, most wave-wave interactions in the atmosphere are off resonant. In addition, the PSI process
may take a long time to develop and may be interrupted by highly nonstationary airflow in the SABL. With
long-lasting fossil turbulence in the background flow [Gibson, 1999], actual occurrence of PSI in the real atmo-
sphere is questionable. In contrast, this process is suspected to play an important role in small-scale energy
transfer and mixing in the oceans [MacKinnon et al., 2013].
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Interactions of nonlinear waves in an inviscid flow can also lead to waves with a wide range of frequencies and
wave numbers, and their spectra resemble turbulence spectra; i.e., they display inertial ranges with specific
laws [e.g., Staquet and Sommeria, 2002]. The application of nonequilibrium statistical mechanics to random
nonlinear waves in a weakly nonlinear regime is sometimes called wave turbulence [e.g., Dewan, 1979; Larraza,
1993; Nazarenko, 2011].

2.3. Wave-Turbulence Interactions
Many theoretical investigations of wave-turbulence interactions have focused on conditions for waves break-
ing down into turbulence [e.g., Koch et al., 2005] but not many on impacts of nonlinear processes associated
with wave-turbulence interactions on the evolution of wave motions. Consequently, a wave saturation theory
is needed to explain the formation of waves of finite amplitudes; i.e., nonlinearity and turbulence are expected
to slow wave growth [e.g., Fritts, 1989; Walterscheid and Schubert, 1990; Weinstock, 1990].

Turbulence can be related to both buoyancy and vorticity waves. IGWs can increase/decrease local shear sta-
bility and thus enhance/reduce existing turbulence. Wave instability leads to exponential wave growth and
vortex rolls, within which turbulence is embedded. In addition, waves can also be generated by turbulent
motions such as “bursts” of turbulent jets that break into a stably stratified region, which was investigated in
laboratory experiments [e.g., Dohan and Sutherland, 2003], and numerically investigated in downslope kata-
batic flows from “shooting” to “tranquil” toward the foot of the slope [e.g., Renfrew, 2004; Largeron et al., 2013].
Interactions between turbulence and IGWs near the surface can also force apparent air and temperature
oscillations at the wave frequency above the IGW layer, leading to turbulence-forced oscillations (TFOs) [Sun
et al., 2015] (more in section 3.1.1). As a result of nonlinearity, wave-turbulence interactions can effect heat
transfer at wave frequencies and modify primary wave amplitudes [e.g., Fua and Einaudi, 1984; Einaudi and
Finnigan, 1993].

In this section, we first discuss general characteristics of turbulence in a stably stratified flow (section 2.3.1)
and how waves lead to turbulence (sections 2.3.2 and 2.3.3). We then briefly describe some theoretical investi-
gations of wave-turbulence interactions (section 2.3.4). Because this review focuses on the SABL, we illustrate
the role of the surface on wave-turbulence interactions (section 2.3.5). As wave instability is critical for gener-
ating turbulence in many numerical models, we discuss the generality of Ricr (section 2.3.6). As a result of the
rapid increase in computing capabilities and the wide availability of numerical models, we also briefly review
some of numerical tools used in investigating wave-turbulence interactions (section 2.3.7).
2.3.1. Turbulence in Stably Stratified Flows
Turbulence in a stably stratified flow is a broad subject [Fernando and Hunt, 1996; Galperin and Sukoriansky,
2010; Sukoriansky and Galperin, 2013]. The turbulence viscosity, which is much larger than the molecular vis-
cosity in the atmosphere, has strong impacts on atmospheric waves although its influence in the interior
of the oceans may be relatively small [Liu et al., 2012]. No matter how stable the SABL is, there seems to
be always some turbulence [Mahrt and Vickers, 2006]. Theoretically, shear-generated turbulence, including
directional shear [Shutts, 1998; Teixeira and Miranda, 2009; Mahrt et al., 2013], loses turbulence kinetic energy
(TKE) through either viscous dissipation or vertical redistribution of temperature through the buoyancy flux.
The buoyancy production term, which is proportional to the buoyancy flux, generates the buoyancy fluctu-
ation called turbulence potential energy (TPE) by Zilitinkevich et al. [2007, 2013]. By considering the sum of
TKE and TPE as the total turbulence energy (TTE = TKE + TPE), Zilitinkevich et al. [2007] clearly emphasized
the important driving mechanism for the dynamics of a stably stratified flow and the role of heat transfer in
redistributing instead of destroying the turbulence energy. As turbulence evolves in the stratified flow, the
pressure strain terms in the component variance equations transfer energy preferentially from 𝜎w to 𝜎u and
𝜎v (where 𝜎 represents the standard deviation and the subscripts represent the three wind components) so
that the eddies increasingly flatten into 2-D horizontal pancake vortices [e.g., Etling, 1993; Sukoriansky et al.,
2005; Lindborg, 2006; Riley and Lindborg, 2008; Galperin and Sukoriansky, 2010].

The recent discovery of the zigzag instability [Billant and Chomaz, 2000; Lindborg, 2006; Billant et al., 2010],
which results in vertically twisted and bent pairs of counterrotating and corotating vertical vortexes in strongly
stratified fluids, suggests that the choice of the vertical length scale is determined by fluid dynamics, i.e., the
buoyancy length scale lb = U∕N [Billant and Chomaz, 2001]. This result on the length scale clearly demon-
strates that turbulence in a stably stratified fluid is not the traditional 2-D turbulence. The zigzag instability
has been associated with low Reynolds number flows (Re = UL∕𝜈, where L and 𝜈 are the characteristic length
scale and the kinematic viscosity, respectively), and its significance has been pursued both experimentally and
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numerically [e.g., Lindborg, 2006; Waite and Smolarkiewicz, 2008]. In addition to lb, the length scale lw = 𝜎w∕N
is often used to represent the turbulent mixing length in the stably stratified atmosphere where turbulent
eddies are not directly interacting with the surface (z-less turbulence) [e.g., Hopfinger, 1987; Rehmann and
Koseff , 2004; Lindborg, 2006]. Riley and Lindborg [2008] investigated stratified turbulence in the oceans and
demonstrated that turbulence eddies becoming isotropic through the energy transfer from TKE to TPE via
overturning occur only at scales smaller than the Ozmidov scale (lo =

√
𝜖∕N3, where 𝜖 is the eddy dissipa-

tion). Because distinguishing cause and effect between turbulent mixing and N can be difficult, all the length
scales defined through N may just reflect the eddy scale of the balanced state instead of the eddy scale being
determined by N [e.g., Ostrovsky and Troitskaya, 1987; Herring and Métais, 1989; Riley and Lindborg, 2008; Mahrt
et al., 2013]. Recently, J. Sun et al. (The role of large-coherent-eddy transport in the atmospheric surface layer
based on CASES-99 observations, submitted to Boundary Layer Meteorology, 2015) found that turbulence in
the SABL observed at level z above the surface is generated on scales between the Kolmogorov scale [Garratt,
1992] and a scale comparable to z.
2.3.2. Wave Breaking Into Turbulence
Wave breaking is one of the most common paths to turbulence generation. Wave breaking can be triggered
by self-acceleration due to interactions between waves and wave-induced mean flow through shear and static
instabilities [e.g., Munk, 1981; Sutherland, 2010] or PSI [Clark and Sutherland, 2010; Pairaud et al., 2010]. The
intuitive picture of wave breaking is that an unstable wave generated by shear instability grows exponen-
tially with time until nonlinear processes take over when wave crests overtake wave troughs, the atmosphere
becomes locally statically unstable with denser fluid overlying less dense fluid [Hines, 1988], and turbulence
is then generated by convective instability. Nonlinearity can both lead to wave breaking by changing the ver-
tical density gradient and also delay or prevent wave breaking [Hirt, 1981]. Wave overturning first appears
in reduced convective stability regions; convective instability is the first step leading to wave breaking and
turbulence generation [Koudella and Staquet, 2006]. The critical wave steepness at which the wave breaking
occurs may be wave number dependent [Troy and Koseff , 2005]. Dissipating waves through wave breaking
can lead to mean motions such as quasi-horizontal (or vortical) motions, which is important for atmospheric
circulations (more in section 2.3.3).

In addition to convective instability, shear instability can also lead to wave breaking and turbulence gen-
eration occurring in K-H billows even if the flow is not convectively overturning especially for waves
with small vertical wave numbers [Sutherland, 2010, Figure 4.18b]. Wind shear can be locally enhanced in
large-amplitude IGWs and triggers small-scale vortices, leading to local turbulence. Turbulence generated
by shear instability in an unconfined stably stratified flow domain may be contained within a thin layer and
be less intense compared with turbulence generated by large-amplitude wave breaking through convec-
tive instability. However, these small vortices can be advected by the background flow and last longer than
turbulence generated by convective wave breaking, which explains commonly observed thin turbulent layers
in stably stratified flows [Fritts et al., 2003, 2009, 2013].

Wave breaking in the interior of a flow without any dissipation only redistributes the potential vorticity (PV)
field without modifying the total PV [Haynes and McIntyre, 1987, 1990; McIntyre and Norton, 1990], which is
not the case near the surface in the SABL where PV can be generated. The theory of wave steepening and
breaking is thoroughly reviewed by Staquet and Sommeria [2002], Staquet [2004], and Achatz [2007].
2.3.3. Wave Critical Levels
The T-G equation (1) can become singular at a critical level, zcl, where U(zcl) = c and c is the wave phase
speed in the direction of wind velocity. Most investigations of wave critical levels in the literature focus on
their impact on wave generation and property changes such as wave dissipation/breaking [e.g., Geller et al.,
1975; Nappo and Chimonas, 1992; Moustaoui et al., 2004; Lane and Sharman, 2008; Pulido and Rodas, 2008],
mean flow acceleration through wave momentum flux deposition when IGWs break near critical levels [e.g.,
Jones and Houghton, 1971; Hirt, 1981; Weinstock, 1982; Nappo and Chimonas, 1992], IGW reflection from criti-
cal levels [e.g., Jones, 1968; Hirt, 1981], wave energy leakage across critical levels [e.g., Booker and Bretherton,
1967; Jones and Houghton, 1971; Teixeira et al., 2008], and three-dimensional wave instability near critical lev-
els [Winters and D’Asaro, 1994]. A background shear flow can supply energy to waves through instabilities and
can extract energy from waves through wave momentum deposition at wave critical levels [e.g., West, 1981].
Wave reflection between wave critical levels and the surface can lead to ducted waves [e.g., Lindzen and Tung,
1976; Monserrat and Thorpe, 1996]. Reflected downward waves from wave critical levels can have more energy
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than upward moving incident waves in a stably stratified shear flow if 0 < Ri(z = zcl) < 0.25 [Jones, 1968], a
process known as overreflection.

A critical wave level provides a potential location for turbulence generation and wave-turbulence interac-
tions in the SABL. Due to the limitations of linear wave theory for wave critical levels [e.g., Dörnbrack and
Nappo, 1997], a vast body of literature considering wave critical levels has focused on modification of the lin-
ear assumptions used in wave critical levels, which include nonlinearity [Haberman, 1973; Fritts, 1979; Churilov
and Shukhman, 1996], viscosity and heat conduction [e.g., Hazel, 1967; Yanowitch, 1967; Fritts and Geller, 1976],
and wind direction shear [e.g., Doyle and Jiang, 2006]. Overall, predicted impacts of wave critical levels on
turbulence generation depend on the assumed background environment and the dynamic complexity con-
sidered in the analysis. Uncertainties in the effects of wave critical levels on wave generation, dissipation,
breaking, and absorption still exist even in very sophisticated wave investigations. A finite-amplitude wave
packet of various wavelengths can be energy diffusive compared to a single wave, so that the singularity at a
critical wave level does not appear as dramatic for transient IGW packets as for a monochromatic IGW [Pulido
and Rodas, 2008].

2.3.4. Theoretical Investigation of Wave-Turbulence Interactions
For slowly varying waves with an approximately constant wave period and a sufficient number of cycles, a net
transfer of energy between waves and turbulence can be investigated through decomposing atmospheric
variables into a time-averaged mean flow and wavelike and turbulent components [Fua et al., 1982; Einaudi
et al., 1984; Finnigan et al., 1984; Finnigan, 1988; Einaudi and Finnigan, 1993; Finnigan and Shaw, 2008]. They
devised a triple decomposition to statistically understand the energy and momentum balances in a coexist-
ing wave-turbulence system and used phase averaging to extract wave motions of constant frequency and
slowly varying wave amplitude from a turbulent background flow in studying wave-turbulence interactions.
The triple decomposition demonstrates that wave-turbulence interactions are achieved through the work
done against the strain rates of the wave motion by fluctuations in turbulent stress. Because of the required
conditions for the triple decomposition of the fixed-wave frequency, turbulence cannot modify the wave
frequency; thus, the wave-turbulence energy exchange at a particular phase of the wave evolution cannot be
investigated by this technique directly.

Other aspects of wave-turbulence interactions have also been investigated. Examples include the damping
effect of near-surface turbulence on vertical variations of wave momentum fluxes generated by topography
[Grisogono, 1994a, 1995], effect of nondissipating waves on turbulent mixing in the SABL [Zilitinkevich et al.,
2009], the initial stage of wave-induced turbulence when the background flow is approximately unaffected
[Fua et al., 1982], and influences of the vertical variation of turbulent mixing represented by eddy coefficients
on wave phase velocities, growth rates, and vertical structures of waves [Fua and Einaudi, 1984]. In addition,
turbulence damping of IGWs as a function of wave numbers has been investigated in laboratories [Ostrovsky
et al., 1996].

To investigate wave-turbulence interactions, various simplified turbulence parameterizations, such as
Rayleigh friction (the friction term parameterized as a linear function of wind speed), constant viscosity, and
quasi-linear theory, have been explored [e.g., Chimonas, 1972]. These simplified approaches may capture
aspects of wave-turbulence interaction processes, in general, but are limited by their unrealistic description
of the atmosphere.
2.3.5. Influences of the Surface on Wave-Turbulence Interactions
The role of the surface on wave motions is traditionally investigated through its generation of unstable modes
under various wind shear and stratification conditions in an inviscid flow near the surface [e.g., Jones, 1968;
Davis and Peltier, 1976; Lalas and Einaudi, 1976; Lindzen and Rosenthal, 1976, 1983; Rosenthal and Lindzen,
1983a, 1983b; Romanova and Yakushkin, 1995]. The destabilizing effect of the surface on long IGWs was inves-
tigated theoretically by Lalas et al. [1976] and was observed by Greene and Hooke [1979]. With varying density
stratification above the surface, resonance between neutral modes supports local standing IGWs between a
critical level and the surface (a special wave critical level) [Lott, 2007]; secondary K-H instability and turbulence
can be generated at locally reduced Ri. Recently, Candelier et al. [2012] found that instability can also occur
when the angle between shear and density surfaces resulting from a sloped surface is not zero.

Increasingly, physical and thermodynamic effects of the surface on wave formation have drawn attention
of the research community. Topography can impose boundary conditions, which affect wave growth rates
and slopes [Thorpe and Holt, 1995]. An inflection point in a stably stratified flow is not necessarily required
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for wave instability near the surface [e.g., Chimonas, 1974]. Radiative cooling of the ground provides ideal
stable stratification for wave ducting in the SABL. Heterogeneous land cover and topography may result in
formation of cold air pools and density currents, which provides potential disturbances for generation of IGWs
and vorticity waves [e.g., Sun et al., 2015].

The surface can provide boundary conditions not only for generating waves but also for simultaneously gen-
erating turbulence. Turbulent eddies attached to the surface are generated by shear instability associated
with the bulk shear, U∕z, which are much more powerful than turbulent eddies that are detached from the sur-
face in the very stable atmosphere [e.g., Sun et al., 2012, 2015] (more in section 3.1.1). Turbulent mixing near
the surface also affects mountain waves [Georgelin et al., 1994; Smith et al., 2002; Jiang et al., 2006; Smith et al.,
2006; Smith, 2007; Smith et al., 2007; Vosper and Brown, 2007]. In response to pressure fluctuations induced
by mountains, wind changes in the turbulent ABL lead to surface drag and ABL depth changes, reduced IGW
amplitudes, and upwind wave phase shifts. The momentum deposited in the ABL can take the form of a tur-
bulent stress. Smith et al. [2007] found that the reduction of pressure drag and wave momentum flux in the
SABL is most severe for small-scale hills. Turbulence mixing can reduce dynamic impacts of terrain on IGW
generation. Influence of the turbulent ABL on mountain waves has been investigated for increasingly com-
plex terrain [Grubišić and Stiperski, 2009; Stiperski and Grubišić, 2011], various structures of the ABL [Teixeira
et al., 2013], and varying thicknesses of the stable layer above the ABL [Ralph et al., 1997].

With a constant horizontal pressure gradient over a sloped surface or forest canopies in the SABL, periodic
motions can be generated due to imbalance between the pressure gradient and turbulent stress [e.g., Pulido
and Chimonas, 2001; Chimonas, 2003], which is called the Jeffreys’ mechanism [Jeffreys, 1925]. TFO genera-
tion mechanism (sections 2.3 and 3) is analogous to Jeffereys’ mechanism. Laboratory experiments have also
been used to investigate waves associated with shear instability near the surface and resonant feedback with
turbulence [Dohan and Sutherland, 2003].
2.3.6. Instability and Critical Richardson Number
In the inviscid linear theory, Ricr for shear instability is derived for the very specific case of a steady parallel shear
flow with no IGWs in a stably stratified medium, for example, by Miles and Howard [1964]. Furthermore, they
investigated Ri > Ricr = 0.25 as the condition for a stably stratified flow, which has been an assumed corollary
in the fluid dynamics that the flow is unstable for Ri < Ricr. The wave-induced velocity in a nonrotating medium
causes the parallel shear to oscillate in space and time, which violates the assumption of the parallel ambient
wind and likely leads to the Ricr criterion for wave breaking/turbulence generation to be irrelevant. In addition,
wave oscillations modulate the mean shear of the background flow such that the local Ri may be smaller than
the Ri averaged over a wavelength [e.g., Finnigan et al., 1984]. In the ABL, Ricr is often found to be 0.2. Busch
[1973] pointed out that the Ricr found in the ABL should not be confused with the Ricr = 0.25 for the transition
from laminar to turbulent flows. Zilitinkevich and Esau [2007] and Zilitinkevich et al. [2008] made the same point.
In addition to the above confusion, instead of Ri, the turbulent flux Richardson number, Rf , is often used in
boundary layer studies [e.g., Grachev et al., 2013], which can be related to Ri in the surface layer [e.g., Sorbjan,
1989]. The close connection between the bulk shear U∕z and turbulence strength found by Sun et al. [2012]
implies that local shear 𝜕U∕𝜕z cannot capture variations of turbulence strength except for weak winds. J. Sun
et al. (submitted manuscript, 2015) suggested that the gradient Ri may need to be calculated using the length
scale of turbulence generation, which is the length scale of the shear instability in a stably stratified flow.

Ricr plays a significant role in determining the onset of turbulence in many mesoscale models. However, its
relevance to turbulence generation has been debated in the literature, and an increasing number of studies
question its universality and accuracy in predicting turbulence generation [e.g., Howard and Maslowe, 1973;
Thorpe, 1977; Abarbanel et al., 1984; Grisogono, 1994b; Strang and Fernando, 2001; Andreas, 2002; Zilitinkevich
and Baklanov, 2002; Fernando, 2003; Troy and Koseff , 2005; Achatz, 2007; Galperin et al., 2007; Mauritsen and
Svensson, 2007; Zilitinkevich and Esau, 2007; Sun, 2011; Sun et al., 2012; Grachev et al., 2013]. For example, an
IGW may be unstable to PSI regardless of the Ri value [Drazin, 1977; Klostermeyer, 1991; Walterscheid et al.,
2013]. The value of Ricr depends on whether the transition is from turbulent to laminar flows or the reverse
[e.g., Canuto, 2002]. Howard and Maslowe [1973] pointed out that “... it is misleading to think that the onset
of instability in a parallel stratified nonturbulent flow can be characterized in general by any universal critical
Richardson number.”

As explained in section 2.3.1, stratification and wind shear are connected in a stably stratified shear flow.
Because shear generation is the only turbulence generation mechanism in a stably stratified fluid, the
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influence of stratification on turbulence strength is suppressive. Stable stratification in the SABL driven by
surface cooling reflects the vertical variation of density resulting from turbulent mixing that is generated by
shear instability near the surface [Sun et al., 2015]. Increasing turbulent mixing can significantly reduce the
vertical temperature gradient near the surface. Without external forcing, turbulence leads to the energy trans-
fer from TKE to TPE in a stably stratified flow, as clearly demonstrated in laboratory experiments [e.g., Lin and
Pao, 1979]. Increasing stratification in the SABL by cold advection associated with density currents is often
related to significant wind changes. Therefore, turbulence generation may not be well correlated with local
Ri for a range of stability conditions in the atmosphere. As a result of the above mentioned issues, the use
of Ricr is sometimes avoided by using functions fitted from observations, such as the long-tail formula [Louis,
1979; Steeneveld et al., 2008], or through consideration of the total turbulence energy balance [e.g., Mauritsen
and Svensson, 2007], or spectral theories [e.g., Sukoriansky and Galperin, 2005; Sukoriansky et al., 2005] (more
in 4.2.1).
2.3.7. Numerical Tools for Investigation of Wave-Turbulence Interactions
Numerical simulation has become an important tool to investigate wave-turbulence interactions in the SABL.
Both direct numerical simulation (DNS), where turbulence can be resolved directly, and large eddy simulation
(LES), where large turbulence eddies are directly resolved and subgrid turbulence eddies can be param-
eterized, are increasingly being used as the computer power increases with time. Fritts et al. [2009, 2013]
demonstrated with DNS that direct coupling between large-scale and small-scale IGWs initiates layered and
intermittent turbulence through K-H instability in an otherwise quiescent region, which results in a pro-
gressive destruction of a shear layer without any overturning convective instability process. Almalkie and de
Bruyn Kops [2012] simulated turbulence in stably stratified fluids using a very high DNS model resolution of
40962 ×2048 and confirmed most of these results. They also examined the energy budget and found upscale
energy transfer. In addition, they identified locations of sporadic overturning. Using DNS, Kimura and Herring
[2012] investigated detailed energy spectra of turbulence in stably stratified flows by decomposing the flow
into IGW and vortex modes and found different spectral behaviors in horizontal and vertical directions with
varying stability. Recently, Rorai et al. [2014] showed that turbulence bursting or intermittency (in the form of
non-Gaussian vertical velocity values) increases with stratification when nonlinear steepening occurs in the
so-called saturation regime where nonlinear advection and buoyancy approximately balance.

The current limitation of DNS is its inability to simulate flows with Re> 104 −105. Even considering the rapidly
increasing computer power, the relatively low Re in DNS compared to its atmospheric value of Re = 107

precludes its resolving the Ozmidov length scale and entering the strong wave-turbulence interaction regime.
Simulating turbulence in very stably stratified flows poses a serious challenge to DNS because the time for
waves to interact nonlinearly through, for example, resonances, is relatively long, which translates into long
model runs. A compromise solution is to utilize LES to simulate moderately stable flows [Beare et al., 2006]. For
example, in the convective daytime ABL, Sullivan and Patton [2011] showed that the higher-moment terms
such as skewness, variances, and fluxes become grid size independent if the scale separation between the
energy-containing eddies and those near filter cutoff eddies is adequate. Such high-resolution LES models
with a dynamic subgrid-scale model have been used to simulate atmospheric turbulence and K-H instabilities,
for example, in simulating radar backscattering [e.g., Franke et al., 2011].

2.4. Challenging Issues in Wave-Turbulence Interactions
Investigation of waves in complex environments has been conducted increasingly through mathematical
and numerical approaches due to increasing computing capabilities. Vorticity waves are commonly assumed
once wave unstable modes are found. Progress has been made in understanding the early transition-to-wave
stage of channel flows provided that Re is not large [e.g., Vosper et al., 1999]. However, only a few studies
include effects of turbulence on wave motions. Most vorticity wave investigations are limited to the onset of
turbulence, which is assumed to occur if Ri < Ricr as a result of wave-mean flow or wave-wave interactions.
Our understanding of wave development is still limited. Statistical understanding of wave-turbulence inter-
actions using spectral analysis can provide useful information on the general state of mixed wavelike motions
and turbulence in the upper atmosphere [e.g., Cho et al., 1999], but the analysis depends on sample condi-
tions, wave states, and locations. Statistical investigations do not provide information on the evolution of the
wave-turbulence energy transfer in space and time. Most numerical investigations of wave-turbulence inter-
actions focus mainly on the interior of the flow domain and avoid impacts of the surface on wave-turbulence
interactions.
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Figure 2. The time series of the “dirty” waves during the night of 20
October 1999 during the field campaign of the Cooperative
Atmosphere-Surface Exchange Study in 1999 (CASES-99), which
includes the wind speed V , the vertical velocity w, and the wind
direction WD at 0.5 m above the surface and the thermocouple
temperature TC at 2.3 m. All the variables are scaled as indicated in the
figure for easy comparison [after Sun et al., 2012, Figure 12] (©American
Meteorological Society, used with permission).

To understand intermittent turbulence in
the SABL, we need to understand how
wave motions lead to turbulence and
how turbulence modifies background
flows and characteristics of existing wave
motions. The approximate validity of lin-
ear theory for prediction of wavelength
and wave periods is not fully understood
even though the assumption of small
amplitudes for linear and weakly nonlin-
ear analysis is clearly not valid in most
observed atmospheric wave motions.
Basically, most wave investigations con-
centrate on mathematical solutions of
unstable modes and lack physical under-
standing of wave evolution, which makes
understanding impacts of waves on tur-
bulence and wave-turbulence interac-
tions difficult.

Additionally, the atmosphere is full of 3-D
vortices of various sizes [Gibson, 1999].
Interactions between waves, 3-D back-
ground winds, and vortical motions add
additional complication to the dynam-
ics of wave-turbulence interactions [Riley

and Lelong, 2000], which is particularly relevant in the SABL. Including vortices in a stably stratified flow can
lead to interactions of wave motions with widely separated scales and complicate energy transfer to both
shorter and longer wavelengths. In this light, one can remark that a dual cascade of energy toward both
large and small scales has been observed recently in DNS of Boussinesq flows in the presence of rotation and
stratification [Pouquet and Marino, 2013].

Evolution of wave-turbulence interactions can be an initial value problem as well as a boundary condition
problem. Nonstationarity of airflow and spatial inhomogeneity of landscape have not yet been adequately
addressed in theoretical and numerical studies. Because of the surface constraint, understanding evolution
of wave motions is crucial for understanding spatial and temporal variations of shear instability for generat-
ing turbulence near the surface. An investigation requires careful consideration of the conservation of the
total energy, momentum, and heat, which is lacking in most theoretical investigations of wave motions and
is crucial for wave-turbulence interactions in the SABL [West, 1981; Müller et al., 1986; Durran, 1995].

3. Observations of Waves and Wave-Turbulence Interactions

Observed waves in geophysical flows especially in the SABL are far more complex than theoretically investi-
gated waves. Signatures that are sinusoidal for just a couple of cycles are often referred to as “waves” due to
lack of observations to estimate the special characteristics of waves discussed in the previous section [Caughey
and Readings, 1975; de Baas and Driedonks, 1985; Einaudi and Finnigan, 1993; Lee et al., 1997; Cuxart et al., 2002;
Anderson, 2003; Meillier et al., 2008; Viana et al., 2010, 2012]. Waves with a number of cycles of approximately
constant amplitude and period are referred to as clean waves here and have been observed mainly in the mid-
dle and upper troposphere [e.g., Hicks and Angell, 1968; Gage and Gossard, 2003; Alexander et al., 2010], and
z ≥ O(10 m) in the SABL, where turbulent mixing is often weak and the mean wind varies less compared to
the flow near the surface [e.g., Gossard et al., 1970; Einaudi and Finnigan, 1993; Eaton et al., 1995]. Time series of
wind observations reveal that waves near the surface in the SABL commonly have only a few cycles with vary-
ing amplitudes and periods (Figure 2). Complex waves may consist of many wave modes; wave spectra may
be spread out in frequency and wave number space [Tennekes, 1976]. Some waves have significant asymme-
try between wave crests and troughs and may approach ramp-like structures. In this section, we collectively
refer to these common approximately periodic motions, such as those in Figure 2, as “dirty waves.”
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Turbulence obviously contributes to the dirtiness of observed waves, especially over rough and typically het-
erogeneous surfaces [e.g., Sun et al., 2015]. Even away from the surface influence, coexistence of waves and
turbulence is evident in temporal variations of cloud patterns [e.g., Thorpe, 2002] and remotely sensed images
that rely on spatial gradients of the refractive index for visualization [e.g., Gage and Gossard, 2003]. Wave
activities associated with fronts have been observed to contain intermittent turbulence [e.g., Tjernström and
Mauritsen, 2009]. Wave-turbulence interactions are also evident from direct observations of wind speed and
indirect observations such as sensible heat fluxes, which is revealed by the observed nonorthogonal phase
difference between vertical velocity and temperature oscillations [e.g., Viana et al., 2012]. In contrast to the
zero sensible heat transport by a monochromatic buoyancy wave of infinitely small amplitude in an inviscid
medium over a wave period based on linear wave theory, the observed sensible heat transport is often not
zero. A finite value of the sensible heat transport can result partly from a noninteger number of wave cycles
in the averaging time for calculating the wave heat transport and partly from the contribution of the ambient
flow. If IGW and turbulence frequencies partially overlap, the wave scalar transport may lead to “random” tur-
bulent flux errors, which could significantly impact the accuracy of the turbulent transport estimated by the
widely used eddy covariance method in monitoring the material and energy exchange between the atmo-
sphere and the ecosystem [e.g., van Gorsel et al., 2011]. Because turbulence develops as vorticity waves evolve,
sensible heat fluxes are not zero for vorticity waves.

Wave observations face challenges in the SABL partly due to weak vertical wave motions, wave reflection in
the strongly stratified and nonstationary ducting zone [Meillier et al., 2008; Viana et al., 2009], and temporal
variations of the background flow. In addition, observations of turbulence require research quality measure-
ments, which cannot be obtained through routine observations. Observations of dirty waves are the focus of
this section, where we review some observed waves and wave-turbulence interactions, instruments that are
suitable for observing wave-turbulence interactions, and methodology for identifying turbulence in waves.

3.1. Observed Wave Generation Mechanisms and Wave-Turbulence Interactions
By applying the methodology developed for theoretical studies of waves, observed waves are often con-
firmed once unstable modes in the background flow are identified. That is, the initiation and the origin of wave
motions are often unknown due to limited observation coverage. Identifying wave generation mechanisms
has been attempted when good observation coverage exists for obtaining wave characteristics although
accurate determination of wave origins is still challenging even when extensive data sets are available from
field campaigns [Lothon et al., 2014; Román-Cascón et al., 2015]. Following the theoretical discussion in the
previous section, we organize observed waves into two general categories according to their generation
mechanisms: (1) buoyancy waves forced by displacing streamlines and (2) vorticity waves including vortex
sheets or rolls initiated by shear instability. Wave-turbulence interactions may also result from local shear insta-
bility generated by wave-wave interactions [e.g., Pavelin and Whiteway, 2002], which are even more difficult
to observe.
3.1.1. Observed Buoyancy Waves and Wave-Turbulence Interactions
Evidence of observed IGWs resulting from streamlines displaced by physical obstacles is abundant. The
physical obstacles can be either large-scale obstacles, such as mountains [e.g., Lenschow et al., 1988;
Smith, 1989; Lane et al., 2009], or small-scale features, such as shallow topography [e.g., Rees and Mobbs,
1988; Rees et al., 2000; Steeneveld et al., 2009]. However, physical obstacles may not necessarily gener-
ate buoyancy waves if conditions are not right (section 2). Observations of fog by video cameras over
small-scale surface obstacles in a strong SABL reveal that air motions often flow around the obstacles
(http://www.youtube.com/watch?v=8fu1bvGIF44), which precludes IGW generation. The weak wind and the
stable stratification near the surface could prevent any significant displacement in this situation.

Displaced streamlines have also been observed in convergence zones associated with various weather phe-
nomena such as intrusion of convective updrafts from the ABL into the stably stratified free troposphere
[Kuettner et al., 1987; Nastrom et al., 1990; Nastrom and Fritts, 1992; Sato et al., 1995; Böhme et al., 2004; Gibert
et al., 2011; Melfi and Palm, 2012; Petenko et al., 2012] and collisions between background flows and density
currents from fronts, squall lines, or downdrafts from convective thunderstorms and downslope flows in the
ABL [e.g., Jordan, 1972; Curry and Murty, 1974; Balachandran, 1980; Eckermann and Vincent, 1993; Samah and
Thorpe, 1993; Simpson, 1997; Ralph et al., 1999; Soler et al., 2002; Tjernström and Mauritsen, 2009; Viana et al.,
2010; Udina et al., 2013; Soler et al., 2014; Román-Cascón et al., 2015]. The scale of density currents can be as
small as microscale such as mini-density currents and microfronts as a result of cold air from cold air pools
in small gullies or from relatively colder surfaces due to different cooling rates over heterogeneous surfaces
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[e.g., Balsley et al., 2002; Hohreiter, 2008; Mahrt, 2010a; Sun et al., 2015]. The wind sheltering effect of small
valleys also contributes to development of cold air pools and cold air movements [Vosper and Brown, 2008;
Zhou and Chow, 2013]. Alternation between acceleration of a cold drainage flow and its deceleration by adi-
abatic warming can cause nonpropagating buoyancy oscillations in valleys, leading to IGWs trapped by an
overlying critical wave level [e.g., McNider, 1982; Chemel et al., 2009]. IGWs have been reported on the top or
leading edge of density currents [e.g., Sun et al., 2002; Viana et al., 2010]. IGWs generated by different density
currents, for example, from the drainage flows in a valley and its tributaries [Porch et al., 1991], may interact
with each other. IGWs may at times appear to be above the SABL but are generated in the deep SABL upstream
[e.g., Mahrt et al., 2013]. Rees et al. [2000] found that about 10% of the observed IGWs over the Brunt Ice Shelf in
Antarctica are strongly controlled by conditions near the top of the SABL. IGWs above the ABL may modulate
the wind field of even neutral and convective ABLs through their pressure field and the inversion height.

Recent observations of relationships between the size distribution of turbulent eddies and turbulence gener-
ation have led to new understanding of interactions between IGWs and turbulence near the surface. Sun et al.
[2012] found that strong turbulence near-neutral conditions consists of large turbulent eddies that scale with
z and are generated by the bulk shear, U∕z. In contrast, relatively weak turbulence is generated by local shear
with a length scale less than z. Applying this new concept of the turbulence generation mechanisms, Sun et al.
[2015] found that oscillations of IGW wind speed lead to differences in turbulence generation at wind speed
wave crests and troughs: strong turbulence with large eddies attached to the surface at wave crests and rela-
tively weak and vertically elevated turbulence at wave troughs. The periodically strong mixing at wave crests
redistributes heat and momentum vertically over a relatively deep layer, resulting in apparent temperature
oscillations in the layer of IGWs near the surface and apparent and temperature oscillations above the layer,
i.e., turbulence-forced oscillations. The temperature oscillation in the IGW layer is in phase, instead of 90∘out
of phase, with wind speed as in the linear IGW, resulting in heat transfer. The wind speed and temperature
of the TFOs are 180∘out of phase with the original IGW wind speed, leading to countergradient momentum
and heat transfer at the IGW frequency. The enhanced local turbulent mixing at wave troughs reduces the
wave period of the existing IGWs. Therefore, the different turbulence generation mechanisms lead to wave
asymmetry between wave crests and troughs, which is commonly observed.

Observations of solitary waves in the atmosphere have been extensively documented [e.g., Christie et al.,
1981; Doviak and Ge, 1984; Lin and Goff , 1988; Smith, 1988; Jeffrey, 1989; Cheung and Little, 1990; Rottman and
Grimshaw, 2002; Anderson, 2003; Sun et al., 2004]. Rottman and Grimshaw [2002] have categorized observed
solitary waves as shallow-layer and deep-layer solitary waves depending on whether the solitary waves
occupy a shallow layer near the Earth’s surface or the entire troposphere. In addition, they concluded that the
shallow waves are generated by mesoscale processes such as density currents, and the deep waves are gen-
erated by synoptic-scale features such as large-scale convective systems and geostrophic adjustment. Due to
limited observation coverages, the generation mechanism of solitary waves is often speculative [Doviak and
Ge, 1984; Chimonas and Nappo, 1987].

Solitary waves in the SABL are often observed with one or several bell-shaped surface pressure perturba-
tions. The amplitude of the pressure perturbation and the ratio of its value to wavelength are significantly
larger for solitary waves than those with IGWs [Hauf et al., 1996]. They are often observed to travel long dis-
tances without losing their shape even over rough urban surfaces [Rao et al., 2004], suggesting that they are
not significantly influenced by local turbulence [Doviak and Ge, 1984; Edwards and Mobbs, 1997]. In addition,
trapping mechanisms, such as weakly stratified layers or wave critical levels over a strongly stratified layer, are
frequently observed with solitary waves [Rottman and Grimshaw, 2002; Coleman et al., 2009]. Rees et al. [1998]
found that solitary waves are common within a surface inversion with weak winds over a coastal Antarctic ice
shelf and often propagate at speeds of 10–20 m s−1 or more. They can be much deeper than a typical obser-
vation tower with considerable uncertainty on the upper boundary trapping mechanism. This may be one of
the difficulties for theoretical confirmation of solitary waves [Doviak et al., 1991]. Because of their nonlinearity,
scalar fluxes, such as sensible heat flux, can be associated with solitary waves [e.g., Edwards and Mobbs, 1997;
Sun et al., 2004].
3.1.2. Observed Vorticity Waves and Wave-Turbulence Interactions
Observed vorticity waves are often associated with K-H instability [e.g., Hardy et al., 1973; Busack and
Brümmer, 1988; de Silva et al., 1996; Lee et al., 1997; Blumen et al., 2001; Fukao et al., 2011]. Fukao et al. [2011]
have conducted an extensive study of K-H billows in the height range of 1.32–20.34 km using a wind radar
profiler. They found that K-H billows are not ubiquitous and typically occur when vertical speed shear is about
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15–30 m s−1 km−1. They also noticed that the depth and the wavelength of K-H billows are smaller in the
ABL than in the free atmosphere. Lyulyukin et al. [2013] composited shapes and structures of braid patterns of
K-H billows in the SABL observed by a sodar and found that they frequently appear during the morning and
evening transition hours. Readings et al. [1973] summarized scientific issues on formation and breakdown of
K-H billows based on atmospheric observations and laboratory results.

Waves generated by shear instability associated with wave critical heights are also frequently observed [Merrill
and Grant, 1979; Finnigan et al., 1984; Ralph et al., 1993; Tjernström et al., 2009]. Einaudi and Finnigan [1993]
found that wave critical levels were common above the 300 m tall Boulder Atmospheric Observatory tower
in Colorado and atmosphere profiles up to several kilometers above the surface were necessary to obtain K-H
modes from the T-G equations.

Vorticity waves associated with inflection points in the wind profile are routinely observed near velocity jets
and canopy tops [e.g., Raupach et al., 1996; Lee, 1997; Lee et al., 1997; Lee and Barr, 1998; Finnigan, 2000;
Finnigan et al., 2009]. Vorticity waves in a layer of finite depth above plant canopies at night are almost ubiq-
uitous for several reasons [Fitzjarrald and Moore, 1990; Belcher et al., 2012]. Interaction between the radiative
cooling of the upper canopy after sunset and the different efficiencies of momentum and heat transfer in the
layers just above the canopy and the upper canopy ensure the relatively large Ri ∼O(10) in the upper canopy
layer and the relatively small Ri∼O(0.1) above the canopy. Hence, this inflection point instability, which results
from a maximum wind shear at the canopy top, keeps generating vorticity waves at the canopy top inter-
face. Hu et al. [2002] found that the momentum and heat fluxes of vorticity waves at the canopy top vary with
height as a result of turbulent mixing from vortex rolls and are maintained by extracting kinetic energy from
the background flow. Therefore, turbulence is periodically generated by nonlinearity of vorticity waves initi-
ated by the inflection point instability, which can effectively transport scalars as well as momentum at both
turbulence and wave scales. In contrast to buoyancy waves, they observed that the vorticity waves travel at
approximately the background flow speed.

3.2. Wave Observation Methods for Wave-Turbulence Interactions
A variety of wave observation methods and technology has been discussed, for example, in Lenschow
[1986], Gage and Gossard [2003], and Nappo [2012]. Here we focus on the suitability of various methods for
investigating wave-turbulence interactions in the SABL.
3.2.1. Fixed-Point Measurements
Pressure measurements are frequently used for identifying waves, as vertical motion and temperature of
waves are generally weak near the surface, and horizontal velocity components can be strongly influenced
by local terrain features and surface heterogeneity. The pressure root-mean-square is much larger for spa-
tially coherent waves than for turbulence; for turbulence over a rough wall, it is ∼2.6 𝜌u2

∗ (u∗ is the friction
velocity) [e.g., Elliott, 1972; Anderson et al., 1992]. Thus, pressure variations induced by waves are less likely con-
taminated by turbulence. This makes surface microbarographs ideal for detecting waves compared to direct
observations of wave motions near the surface. To obtain wave phase speed and direction as well as wave fre-
quency, amplitude, and wavelength, an array of a minimum of three microbarographs is required based on the
following assumptions: (1) the wave structure preserves a constant shape while propagating through the net-
work and (2) the wave front is perpendicular to its propagation direction within the observation domain [e.g.,
Herron and Tolstoy, 1969; Herron et al., 1969; Eom, 1975; Hooke and Hardy, 1975]. Microbarographs have been
recently improved in terms of the accuracy and the sampling rate due to advances in counting circuitry and
digital signal processing. Current pressure transducers are sufficiently accurate to allow trustworthy measure-
ments of even turbulent pressure fluctuations. Therefore, pressure measurements can now identify turbulent
mixing related to wave activities [e.g., Viana et al., 2007].

An objective way to obtain wave parameters from quasi-sinusoidal signals that persist for several cycles at
a fixed point is to analyze coherent structures of pressure fluctuations from an array of microbarographs by
applying the maximum cross-correlation method [e.g., Rees and Mobbs, 1988; Einaudi et al., 1989; Hauf et al.,
1996] or the beam steering algorithm [Denholm-Price and Rees, 1999]. The maximum cross-correlation method
is suitable for waves even under the influence of turbulence if their frequencies are separable. The beam
steering algorithm may be able to differentiate wave numbers of multiple waves with the same frequency
[Denholm-Price and Rees, 1999]. However, the accuracy of the derived wave phase speed may not be as good
as O(10−1 m s−1), which is required for testing some wave theories [e.g., Chimonas, 2002]. Wave climatology
has been established under various synoptic conditions using surface microbarograph observation networks
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[Gedzelman, 1983], in the nocturnal SABL in the lee of the Rocky Mountains [Einaudi et al., 1989], over the Brunt
Ice Shelf, Antarctica, using both microbarographs and wind observations [Rees and Mobbs, 1988; Rees et al.,
2000], and for mesoscale wave events within a diameter of about 50 km [Grivet-Talocia et al., 1999].

The limitation of the microbarograph network is, however, the spatial separation of the sensors, which deter-
mines the resolved wavelength [Grivet-Talocia et al., 1999]. Most observed waves estimated from a network of
microbarographs on scales of O(200 m) have periods of O(1–30 min) and wavelengths of O(1–100 km). The
frequency of buoyancy waves is limited by N, which is affected by turbulent mixing and radiative cooling of
the ground in the SABL [Sun et al., 2015]. Smaller spacing between microbarographs would allow identifying
shorter waves, but the resulting pressure differences for long waves may be difficult to detect. The challeng-
ing issue for deploying microbarograph arrays is optimizing the spatial arrangement of a limited number of
microbarographs.

As surface pressure measurements reflect vertically integrated density variations over the entire atmosphere
above pressure sensors, surface pressure fluctuations may reflect wave disturbances well above the surface,
which may or may not be associated with waves in the SABL. Herron and Tolstoy [1969] observed wave activ-
ities associated with jet streams near the tropopause from the surface pressure signals; however, Trexler and
Koch [2000] found that microbarographs can detect the existence of waves only in the lowest 2–3 km of the
atmosphere. The above studies suggest that the pressure oscillations observed at the surface may be domi-
nated by the contribution from heavier air in the lower atmosphere, while the origin of the waves can be much
higher. Turbulent mixing can vertically distribute cold air above microbarographs from the radiatively cooled
ground [Sun et al., 2015]. Thus, turbulent mixing near the surface can influence wave pressure signals from
ground-based microbarograph networks, which is evident in the observed pressure oscillation differences at
different heights by Viana et al. [2010]. Large temporal and spatial pressure variations of weather systems may
also contribute to the relatively small surface wave pressure amplitudes [e.g., Sun et al., 2013].

Because covariances of wave pressure and vertical velocity are related to wave energy, they may also provide
better objective wave signals compared to pressure signals alone [Woods and Smith, 2010]. On the other hand,
the vertical velocity of waves can be significantly affected by turbulent mixing, which may be undesirable for
wave analysis.

Although wave pressure signals are clearly identifiable in the SABL, waves are also identifiable by monitoring
time series of temperature oscillations [e.g., Lee and Barr, 1998; Viana et al., 2012] and horizontal or verti-
cal wind oscillations from towers [e.g., Rees and Mobbs, 1988]. Sun et al. [2015] found that the percentage of
observed wind speeds that exceed the wind speed required for generation of strong turbulent mixing near
the surface decreases with height. Therefore, the chance of observing bulk shear-generated strong turbulence
influencing wave temperature and wind signals decreases with height. Thus, the probability of observing rel-
atively clean wind and temperature wave oscillations increases with height. In addition, wave motions near
the surface are characterized by small flow angles with respect to a horizontal surface, in which case even
small misalignment of the sonic anemometers can lead to large relative errors in vertical wave motions [e.g.,
Mahrt, 2010b]. Similar to using pressure for wave information, using wind and temperature observations for
wave phase speed and propagation direction, as well as wave frequencies, requires an array of towers with
wind and temperature sensors. To avoid the strong turbulence influence and the small flow angle issue near
the surface, these measurements need to be at approximately 10 m or higher depending on the depth of
the wave layer. Furthermore, careful removal of the temporal variation of large-scale background flow is also
required for this method.

Recently, fast-response fiber optic measurements of temperature fluctuations have been deployed over spa-
tial scales of O(1–100 m) to visualize wave propagation [Thomas et al., 2012]. Its deployment in a 2-D to 3-D
formation near the surface could potentially be used for studying wave-turbulence interactions.
3.2.2. Mobile Platform Measurements
Balloon oscillations are another useful method for investigation of waves in the free troposphere [e.g., Corby,
1957; Booker and Cooper, 1965; Vergeiner and Lilly, 1970; De La Torre and Alexander, 1995; Hertzog et al., 2008].
However, it is limited for accurately measuring waves in shallow SABLs because of the relatively small vertical
velocity near the surface and vertical resolutions of sondes [Hertzog et al., 2008].

Tethered lifting systems, which use either an aerodynamic balloon or a kite that is connected to a tether
with instrument packages attached [e.g., Balsley et al., 1998; Balsley, 2008], are also useful for observing
wave-turbulence interactions. They can carry not only basic meteorological packages but also turbulence
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instruments to identify turbulence and waves above a typical tower height [Frehlich et al., 2003; Fritts et al.,
2003; Meillier et al., 2008]. However, using tethered lifting systems to measure wave phase speed and
propagation direction has not been done.

Small aircraft with sufficient payload to carry sensors and associated systems can measure variables related
to both waves and turbulence. Combining inertial reference systems and differential global positioning sys-
tems (GPS) with air motion sensors (e.g., differential pressure measurements in a radome) on small aircraft
may allow measurements of 3-D wind. Similarly, pressure perturbations can be obtained by combining GPS
height with accurate static pressure measurements. Thus, wave energy transfer can be observed directly from
aircraft [Woods and Smith, 2010; Bange et al., 2013]. A remotely piloted aircraft (RPA) can also provide direct
observations of horizontal structures, such as horizontal wavelengths [e.g., Bonin et al., 2013], and repetitive
soundings over a relatively deep layer [Mayer et al., 2012a, 2012b; Reuder et al., 2012]. Turbulence measure-
ments start to become available on RPA [e.g., van den Kroonenberg et al., 2008; Thomas et al., 2011; Reineman
et al., 2013], which makes RPA a great potential tool for investigating wave-turbulence interactions. The rela-
tively slow flight speed of RPAs can provide relatively high spatial resolution measurements but complicates
wave analyses as it cannot capture a “snapshot” of fast-moving waves. Potentially large roll and pitch angles
of RPA may challenge correction methods for removing aircraft motions particularly if the aircraft rolling time
scale overlaps the time scale of interest. This technology is expected to advance rapidly in the near future.

Recently, Belušić et al. [2014] developed an instrument package that has been deployed on a car for mobile
turbulence measurements. It can be used to measure spatial variations of turbulence within a few meters of
the surface following a terrain slope, which cannot be achieved with aircraft or networks of flux towers. This
mobile platform provides another method to investigate wave-turbulence interactions in the SABL.
3.2.3. Remote Sensing
Remote sensors, either on the ground or airborne vehicles, can obtain many observations within a large air
volume in a short time, while in situ sensors are limited to sampling a limited number of points. The high tem-
poral and spatial resolutions required for studying wave-turbulence interactions in the SABL may constrain
the number of suitable remote sensors. Commonly used active sensors designed for investigation of the ABL
are based on radio detection and ranging (radar), sonic detection and ranging (sodar), and light detection and
ranging (lidar) [Lenschow, 1986; Wilczak et al., 1996; Emeis, 2011]. Using radar technology and pointing radar
vertically, radar wind profilers, such as Doppler radars at ultrahigh frequency (UHF) of 915 MGz, with a spaced
antenna technique can measure wind speed to an accuracy of ∼1–2 m s−1 with 1–5 min time resolution and
50–60 m altitude resolution at the minimum height of 180 m under clear-sky conditions [e.g., Ecklund et al.,
1988; Carter et al., 1995; Cohn et al., 1997, 2001]. This vertical resolution is adequate for investigating convec-
tive boundary layers but may miss some of the fine-scale wave-turbulence interactions near the surface in
the SABL. The spatial resolution can be improved using multiple-frequency interferometry or range imaging
techniques [e.g., Muschinski et al., 2005]. The digital beam-forming phased array radar, i.e., the turbulent eddy
profiler with coherent radar imaging, can achieve 30 m spatial resolution and measure the refractive index and
3-D wind [e.g., Mead et al., 1998; Cheong et al., 2008]. Frequency-modulated, continuous-wave (FM-CW) radars
can provide vertical profiles of refractive index inhomogeneities with spatial resolution of about 2.5 m and
temporal resolution of O(10 s) [e.g., Gossard et al., 1970; Eaton et al., 1995; İnce et al., 2003], which is adequate
for detecting wave-turbulence interactions in the SABL.

By measuring backscatter acoustic signal intensity from temperature, velocity, and moisture fluctuations,
sodars can be used to monitor wave-turbulence interactions in the SABL at a time resolution of ∼10 s and
range resolution of ∼10 m, which is essentially free of ground clutter on measured signals [e.g., Brown and
Hall, 1978; Neff and Coulter, 1986]. Sodars can be used to measure wind speed, vertical variations of verti-
cal velocity, and sensible heat fluxes in the convective boundary layer through the relationship between the
structure function of temperature and sensible heat flux [e.g., Angevine et al., 1993; Coulter and Kallistratova,
2004; Engelbart et al., 2007]. Small sensible heat fluxes in the SABL can be challenging for sodar measurements;
however, enhanced intermittent sensible heat fluxes resulting from wave-turbulence interactions could be
detectable. In addition, including multiple frequencies increases the range gate resolution to 19 m and allows
sodar measurements in the vertical range of 10–300 m, which is suitable for investigating the SABL [Coulter
and Martin, 1986; Coulter, 1990; Hoover et al., 2015]. Current efforts to better understand the influence of
anisotropy and intermittency of turbulence on acoustic waves may lead to a better understanding of sodar
signals and increase their use for SABL research [e.g., Kallistratova, 2002].
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Figure 3. A 1 km2 section of a single, nearly horizontal, lidar scan
through wavy motions on 27 April 2007 at 7:54 UTC during the
field campaign of the Canopy Horizontal Array Turbulence Study
[Patton et al., 2011]. The wavelength is ∼70 m. The
range-corrected backscatter intensity was high-pass median
filtered to reveal the wave pattern. Brighter colors represent
higher backscatter intensity [after Mayor et al., 2012b; Jachens and
Mayor, 2012].

Radio acoustic sounding system (RASS), which
utilizes radio and acoustic sounding systems
together, can measure air temperature pro-
files [May et al., 1990]. With the combination
of a sodar system and a Doppler RASS, both
temperature and wind can be measured simul-
taneously at a vertical resolution of 5 m and
a minimum height of 10 to 20 m, which may
be suitable for SABL [e.g., Engelbart and Bange,
2002; Viana et al., 2012].

Significant advancements in lidar technology
have made lidar measurements more attrac-
tive for extending observations above a typi-
cal tower height. Compact Doppler lidars are
now commercially available and can provide
high-resolution vertical profiles of horizontal
winds close to the surface. For example, the
Halo Photonics Stream Line Doppler lidar can
provide vertical profiles of horizontal winds
down to a minimum altitude of 40 m at 8 s
time intervals with an altitude resolution of
24 m. Wind profiles can be achieved from con-
ical scanning and fitting trigonometric func-
tions to the resulting radial velocity data if the

velocity field is approximately horizontally homogeneous. By pointing a Doppler lidar beam vertically instead
of scanning, time-height profiles of vertical velocity can be obtained. With a horizontal scan, Doppler lidars
are typically capable of making radial velocity measurements to distances from 1 to 10 km depending on
the aerosol backscatter conditions [Grund et al., 2001; Pearson et al., 2009]. Air motions at one point have also
been measured by three pulsed coherent Doppler lidars running concurrently to obtain three-dimensional
velocities of the fluctuating atmosphere at two samples per second [Mann et al., 2009]. The fast response and
small sample volume of this observation technique allow direct measurements of turbulence and waves in
a spatial domain that is much larger than typical towers can cover. In addition, it is free of the flow distor-
tion associated with masts and in situ sensors. This technique can potentially measure spatial variations of
turbulent winds. By scanning in azimuth or elevation, lidar can also map out the wind field over a 2-D atmo-
sphere, which can capture spatial variations of waves [e.g., Newsom and Banta, 2003]. By combining conical
azimuth scans and the velocity-azimuth-display technique, temporal variations of wind variance profiles can
be derived [e.g., Banta et al., 2006; Pichugina et al., 2008]. Using two conical scanning Doppler lidars, the vertical
flux of horizontal momentum can be measured [Mann et al., 2010]. Raman lidars can be used to measure water
vapor with the adequate resolution and scanning ability for SABL investigations [e.g., Whiteman et al., 1992;
Froidevaux et al., 2013].

Rapid-scanning aerosol lidars, such as the Raman-shifted Eye-safe Aerosol Lidar (REAL) [Mayor and Spuler,
2004], can provide time-lapse animations of wave activity within the SABL. This occurs when the waves verti-
cally displace aerosol layers [Jachens and Mayor, 2012; Randall et al., 2012]. Images from the REAL have shown
canopy wave motions and provide information on wavelength and wave propagation velocity (Figure 3).
In addition to spatial information and wave motions, backscattered lidar data from the REAL can be pro-
cessed with motion estimation algorithms to deduce multicomponent wind fields [Mayor and Eloranta, 2001;
Mayor et al., 2012a].

Both waves and related turbulence in the SABL have been investigated in the literature with FM-CW radars
[e.g., Atlas et al., 1970; Gossard et al., 1970; Eaton et al., 1995], sodars [e.g., Bean, 1971; Culf and McIlveen, 1993;
Viana et al., 2009, 2010], lidars [e.g., Newsom and Banta, 2003], and both a radar and a sodar [e.g., Ottersten
et al., 1973]. These studies document detailed wave-turbulence interactions in the SABL, as well as the struc-
ture of waves, synoptic conditions for wave formation, and investigation of wave instability theories, and
development of turbulent mixing through its role in enhancing the refractive index in stably stratified flows.
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They documented structures of IGWs, vorticity wave breaking, thin turbulent layers of less than O(10 m), and
the relationship between turbulence and collapse of waves in the stably stratified atmosphere.

3.3. Distinguishing Waves From Turbulence
Objective separation of turbulence and waves from limited time series of any meteorological variable regard-
less of the turbulence intensity is substantially more difficult than recognizing the mere existence of waves
or extracting wave characteristics from observations. Separation between waves and turbulence is required
when attempting to compute the “true” turbulent fluxes and possible wave fluxes. The methods that may be
used to separate relatively clean waves from three-dimensional turbulence are summarized below, which is
an extension of a list from Stewart [1969]. The first three criteria are for buoyancy waves, such as IGWs, and
the last three can be used for all waves.

Criterion 1. Differences in the energy transport speed. Turbulence energy transport follows the background
wind speed, while IGW packets and wave energy follow the group velocity. Identifying wave prop-
agation speeds different from wind speeds can be used for separating waves from turbulence. The
method may be difficult to apply if the wind is nonstationary. The dispersion relationship derived
from linear wave theory can only be used as a guide because most observed IGWs are nonlinear.

Criterion 2. Differences in mixing. Turbulence mixing occurs both along and across surfaces of a constant den-
sity, whereas linear IGWs do not mix across density surfaces. Wave breaking into turbulence can
be location or wave-phase dependent, which appears to be intermittent spatially and temporally.
This criterion may not work if wave and turbulence frequencies overlap (criterion 6).

Criterion 3. Differences in transporting scalars. Linear waves can transport momentum but not heat if covari-
ances between vertical velocity and scalars are averaged over a set of integer wave periods while
turbulence can transport both momentum and scalars. Thus, waves can be distinguished by their
efficiency in momentum transport relative to scalars [e.g., Dewan, 1979; Yagüe and Cano, 1994,
Yagüe et al., 2001, 2006; Sukoriansky et al., 2009; Fernando and Weil, 2010]. However, zero wave heat
flux in the SABL near the surface is seldom observed. The phase difference between the vertical
velocity and temperature is strongly affected by turbulent mixing, which tends to be 180∘at night
and 0∘during the day, i.e., downward turbulent sensible heat flux at night and upward during the
day. Nonlinearity alone can shift the phase difference between wave vertical velocity and temper-
ature, leading to nonzero heat transport [Burns et al., 2012]. In addition, estimating of scalar fluxes
on the wave scale in the atmosphere is problematic due to serious flux errors associated with vari-
able wavelengths and the averaging time of a noninteger number of wave periods. This criterion
also relies on separation between IGWs and turbulence in frequency or wave number, which can
be difficult (criterion 6).

Criterion 4. Differences in correlations between pressure and wind speed fluctuations. Static pressure fluctu-
ations associated with turbulence are related to the square of wind fluctuations, whereas pressure
fluctuations associated with waves vary linearly with velocity fluctuations. This criterion requires
fast response wind and pressure measurements. Because turbulent mixing often increases with
decreasing height in the SABL, the wind wave signal can be significantly affected by turbulent
mixing near the surface; this criterion may be difficult to apply near the surface.

Criterion 5. Variations in Rossby-Ertel PV values. Both linear and nonlinear waves have the baroclinic vortic-
ity vector perpendicular to the density gradient vector, i.e., zero PV [e.g., Riley and Lelong, 2000],
while turbulence is associated with 3-D vortex stretching and bending and has nonzero PV. In a
compressible fluid without dissipative forces or fluxes, the PV following fluid parcels should be
conserved, i.e., D(PV)∕Dt = 0, where PV = (1∕𝜌)𝝃 ⋅ ∇𝜃 (𝝃 is the vorticity vector). Because of this
conservation law, the scalar PV is a useful indicator for IGW breaking and turbulence generation
[e.g., Haynes and McIntyre, 1987; Smith and Smith, 1995; Rotunno et al., 1999; Smith, 2002; Schnei-
der et al., 2003; Epifanio and Qian, 2008; McIntyre, 2008]. Diagnosing the time variation of PV may
be useful for numerical models. However, it cannot be easily applied to field observations due to
the limited 3-D spatial coverage.

Criterion 6. Differences in frequencies or wavelengths. Separation between waves and turbulence is possible
if spectral gaps between waves and turbulence or phase relationships between wave variables
are well defined [Caughey and Readings, 1975; Caughey, 1977; Gedzelman, 1983; Lu et al., 1983;
Hunt et al., 1985]. Frequency separation between waves and turbulence is often assumed in data
analysis. For example, random features with periods of less than 1 min are often considered as

SUN ET AL. WAVE-TURBULENCE INTERACTIONS 974



Reviews of Geophysics 10.1002/2015RG000487

turbulence and are eliminated by low-pass filters for wave analysis [Kaimal et al., 1972; Caughey,
1977; Gedzelman, 1983; Klipp and Mahrt, 2004; Grachev et al., 2013]. To do so, the subjective
low pass must be broad enough to avoid creating waves from noise. For example, the Fourier
transforms used in these analyses can introduce spurious wave signatures, e.g., aliasing. By
investigating each individual data segment, Vickers and Mahrt [2006] used the multiresolution
decomposition to separate turbulence from waves. In contrast to traditional filtering methods,
empirical orthogonal functions can capture more of the wave amplitudes and require less pre-
conditioning of the time series data [Fiorino and Correia, 2002]. Since waves generally occur in
local packets, various wavelet techniques appear superior to Fourier spectra for separating wave
and turbulence quantities and are increasingly used in wave analyses [Rees et al., 2001; Terradel-
las et al., 2001; Cuxart et al., 2002; Terradellas et al., 2005; Viana et al., 2009, 2010, 2012]. Waves that
interact strongly with turbulence generally have periods that lie in the energy-containing range
of the turbulence spectrum. For wavelengths much longer than any turbulent eddies, a spectral
gap between waves and turbulence is likely in wave number space instead of in frequency space.
Therefore, waves are better examined in space than in time, which requires time series of obser-
vations from a spatial network or a moving platform. Separating waves from turbulence in wave
number space requires an adequate observation network to capture a variety of wavelengths
(section 3.2). The method also relies on the assumption that turbulent mixing does not seriously
affect the traveling waves within the network; i.e., the observed waves cannot be too dirty.

3.4. Challenging Observational Issues in Understanding Wave-Turbulence Interactions
Use of existing observational techniques to improve understanding of wave-turbulence interactions in the
SABL has not been fully exploited. Most of the observations so far are from ground-based measurements
at isolated locations. There have been only a small number of adequate horizontal networks of turbulence
measurements and rare research aircraft observations of the SABL [e.g., Belušić and Mahrt, 2008].

The wind dispersion relation has not been fully explored due to difficulty in obtaining wave numbers with a
limited number of barometers. To capture waves with different wave vectors and wavelengths, an optimal use
of a fixed number of microbarographs may involve variable spacing across the network. In addition, long-term
measurements (longer than several months) at many levels would provide a better opportunity to partially
separate various atmospheric influences on waves in the SABL.

To understand intermittent turbulence associated with wave-turbulence interactions, observations of spa-
tial and temporal variations of turbulence as well as wave motions are needed. Surface networks of sonic
anemometers have not been specifically configured to examine wave motions near the surface. Because of
the difficulty to obtain high-resolution spatial observations, calculating spatial derivatives of any variable with
a fixed-point network is almost impossible. The spatial requirement for observing low-frequency and stand-
ing IGWs of 1–30 min periods for several cycles may require a costly extension of the network to larger scales.
Major progress toward such understanding requires 3-D observations with a considerable number of sensors
or new instrumentation and new network configuration strategies.

Frequent measurements of the vertical atmospheric structure above a typical tower height for identifying
characteristics and potential sources of wave motions are important but are generally not available. Theo-
retically, wave-turbulence interactions may modulate the velocity and density profiles, which influences the
production of the TKE and TPE in the SABL. Frequent observations of the atmospheric structure may be use-
ful to detect initiation of wave motions even with the linear theory. Conventional aircraft are generally unable
to fly sufficiently low to study the shallow SABL even when there is sufficient light. Remote sensing tools
discussed in this section provide valuable information on wave-turbulence interactions spatially and tem-
porally. However, interpretation of remote sensing images requires better understanding of wave evolution,
wave-turbulence interactions, and the influence of anisotropic turbulence on remote sensing signals. There-
fore, a good colocated in situ and remote sensing 3-D network may be necessary to establish reliable and
quantifiable complimentary observations of wave-turbulence interactions.

Overall, turbulence and potential wave generation mechanisms are abundant in the SABL. Wave-turbulence
interactions in the SABL provide challenges, but becoming-available new tools provide observational capabil-
ities to probe waves, turbulence, vortices, and their interactions in the SABL, which is relatively easy to access
compared to the upper atmosphere and oceans. Thus, the observational investigation in the SABL contributes
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to understanding of wave-turbulence interactions in general geophysical flows and provides databases for
validating wave and turbulence theories and parameterizations for numerical models.

4. Parameterization of Waves and Wave-Turbulence Interactions

The current literature on parameterization of waves and wave-turbulence interactions in the SABL is sparse.
Due to the significant impact of waves in large-scale circulation models, most of the literature on wave param-
eterizations, particularly for IGWs, focuses on the upper atmosphere, where temporal variations of wind and
stability profiles are relatively small. However, many recent investigations have found that IGWs in the free tro-
posphere are influenced by the ABL (section 3); interactions between the ABL and the free troposphere have
been demonstrated in a global atmospheric model [Kim and Hong, 2009]. A few attempts to devise parameter-
izations of IGWs in the SABL have been based on linear inviscid IGW theory. Steeneveld et al. [2008] explained
the ad hoc enhancement of turbulence in current parameterization schemes caused by failing to account for
IGWs in the calculations of turbulence fluxes. Thus, accounting for unresolved IGWs and their effects on the
SABL in numerical models is still a challenging issue for the community.

Numerical model prediction errors can generally be attributed to deficiencies in model initialization, physics,
numerical methods, and grid resolution [e.g., Stauffer, 2012]. The same error sources also contribute to the
challenges that we are facing for modeling wave-turbulence interactions in the SABL. The model grid spac-
ing decreases as the computer power increases, which means that many previously unresolved phenomena
become, in principle, resolvable by numerical models. Although certain submeso motions may be repro-
ducible by models [Seaman et al., 2012; Suarez and Stauffer, 2014], recent studies suggest that some important
physics may still be missing in models for proper representation of observed irregular wavelike features
regardless of the model grid spacing [e.g., Belušić and Güttler, 2010; Güttler and Belušić, 2012; Luhar and Hurley,
2012]. For relatively large terrain slopes and curvatures, the full momentum and scalar flux tensors need to
be included in the boundary condition in finite-difference models [Epifanio, 2007]. This suggests that proper
parameterizations of small-scale nonturbulent variability are needed until well into the future even with
increasing development of numerical models and computational resources.

4.1. Wave Parameterization in Numerical Models
Attempts to parameterize waves have been concentrated on a few types of waves mentioned in the previ-
ous sections. Wave stress from terrain-induced stationary IGWs has been parameterized based on linear wave
theory with the wave saturation in place so that IGWs with finite amplitude can be achieved. Nappo et al.
[2004] developed a parameterization of IGW stress generated by subgrid-scale topography for single-column
models and emphasized the importance of the vertical grid spacing in obtaining wave breaking.
Steeneveld et al. [2008] developed a formulation for the terrain-induced wave drag in the SABL for large-scale
models and applied it to a column model. They found that the wave stress adds to the total drag to
the atmosphere. The resulting enhanced drag can prevent the unrealistic runaway cooling in the model
without using the long-tail formula in the SABL turbulence parameterization scheme. Furthermore, the avail-
ability of fine-spatial-resolution global topography allows for a very detailed subgrid treatment of these
terrain-induced waves. Therefore, parameterization of terrain-induced stationary waves in numerical models,
although neither fully satisfactorily parameterized nor as yet implemented in any numerical model, seems to
be achievable in the near future [e.g., Nappo and Svensson, 2008]. The effects of form drag due to unresolved
orography have also been parameterized through effective roughness length [Wood et al., 2001].

Most terrain wave drag is effectively obtained by assuming interactions between unidirectional flow and
terrain. IGW parameterization over realistic terrain with vertically varying wind direction becomes complex
[Shutts, 1995]. Wind direction variations with height over realistic terrain may lead to critical level wave absorp-
tion at all heights for some portion of the wave spectrum. Numerically resolved wave motions depend on
characteristics of terrain and model resolutions.

Observations of canopy waves are relatively well documented [e.g., Lee et al., 1997; van Gorsel et al., 2011],
and their generation has been theoretically investigated [e.g., Pulido and Chimonas, 2001; Hu et al., 2002]. The
parameterization of canopy waves is considered intermediately complex for implementation in numerical
models because its theory is not as solid and simple as for the terrain-induced IGWs. In addition, the real-
istic representation of detailed characteristics of canopy in numerical models is more difficult than that for
complex terrain.
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Figure 4. Nondimensionalized fluxes of (a) momentum and (b) heat, as
functions of Ri for six observational field data sets. The shaded areas show
95% confidence intervals on the binned mean. The thick dash lines are
empirical fits. The vertical thin dashed line and the shaded area show
Ri = 0.25 and the interval 0.1 < Ri < 1 where the transition between
strong and weak turbulent mixing occurs (modified after Mauritsen and
Svensson [2007, Figure 3] ©American Meteorological Society, used with
permission).

Parameterizations of complex but
known wave generation mechanisms
pose challenges too. Recently obser-
ved temperature oscillations in a
surface cold pool and surface wind
direction shifts as a result of topo-
graphic IGWs and a rotor circulation
have been reasonably reproduced
by using the Weather Research and
Forecasting (WRF) model with a fine
mesoscale model resolution (444 m
horizontal grid spacing and 10 layers
in the lowest 50 m ABL) and modifi-
cations of the Mellor-Yamada-Janjic
turbulence parameterization scheme
[Suarez and Stauffer, 2014]. The en-
hanced downward mixing associated
with the rotor circulation produced
a short-term, local warming within
the cold pool, leading to an observed
near-surface wind direction shift of
almost 180∘. Observations and the
modified WRF model were used with
a variety of atmospheric conditions
within a valley and demonstrated that
waves above the SABL contribute to
the submeso motions in the SABL
[Suarez and Stauffer, 2014; Wendoloski
et al., 2014; Hoover et al., 2015].

4.2. Prospects for Parameterization of Wave-Turbulence Interactions in the SABL
4.2.1. Current Approaches for Parameterization of Wave-Turbulence Interactions in the SABL
Currently, several parameterization schemes for the SABL attempt to include both waves and turbulence.
One example is given by Mauritsen et al. [2007] based on the idea of the total turbulence energy balance
(section 2.3.1). They used surface observations from six field experiments and developed relationships
between momentum and heat fluxes as functions of Ri (Figure 4), where contribution from both breaking
waves and turbulence may be included. In addition, they used LES results to formulate the mixing length
beyond the surface layer where Monin-Obukhov similarity theory (MOST) is considered valid. This approach
represents improvement in the framework of the Reynolds-averaged Navier-Stokes (RANS) equation.

Another example is a spectral model, which is coined quasi-normal scale elimination (QNSE) [Sukoriansky
and Galperin, 2005; Sukoriansky et al., 2005, 2006; Galperin and Sukoriansky, 2010; Sukoriansky and Galperin,
2013]. QNSE is based on solving the nonlinear Navier-Stokes and temperature equations in a stably strat-
ified flow through a stochastic approach. High-frequency velocity and temperature fluctuations resulting
from nonlinearity of the momentum and temperature equations are considered as a stochastic process. By
systematic ensemble averaging of small shells of high wave number velocity and temperature modes, one
eliminates these modes from the governing equations and computes the resulting corrections to the viscos-
ity and diffusivity. One of the main products of the QNSE theory are scale-dependent, horizontal and vertical
eddy viscosities and eddy diffusivities. Among other results, the nonhydrostatic theory demonstrates the
anisotropization of mixing with increasing stable stratification, the modification of the classical dispersion
relation of linear internal waves by turbulence (Figure 5), the stability dependence of the Prandtl number, and
the nonexistence of Ricr . The QNSE-based subgrid-scale parameterization can be used in both LES and RANS.

An example of the direct approach to wave-turbulence interactions is the work of Zilitinkevich et al. [2009],
where the momentum and heat equations of IGWs are explicitly solved and the contribution of momen-
tum flux from IGWs is explicitly added into the total momentum equation in addition to the turbulence
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Figure 5. The dispersion relation 𝜔(K) derived from the QNSE
theory. Here K2 = k2 + m2, k and m are the horizontal and
vertical wave numbers, respectively, Ko is the Ozmidov

wave number, 𝛼 = ± arcsin(m∕
√

k2 + m2),
𝜔0 = ±N cos 𝛼 = ±Nk∕

√
k2 + m2 is the classical linear

dispersion relation with zero U in (4), and N is the
Brunt-Väisälä frequency of the flow. The colors here are for
visualization only.

contribution. They also found the flows inde-
pendent of Ricr and suggested a contribution
of IGWs to momentum fluxes under large Ri
conditions.
4.2.2. Improving Higher-Order Turbulence
Closure Schemes
There is a need to reinvestigate the higher-order
turbulence closure (HOC) parameterization sche-
mes that are typically used nowadays [e.g., Mellor
and Yamada, 1982]. These HOC schemes, once
considered advanced and sophisticated, were de-
veloped in the 1970s with the hydrostatic assum-
ption [e.g., Yamada and Mellor, 1975; Yamada,
1983; Andrén, 1990]. The nonhydrostatic effects
(besides vertical accelerations), such as verti-
cal variations of the vertical velocity variance,
may not be adequately represented by K theory,
and yet the first-order closure is not a suitable
option in the state-of-the-art nonhydrostatic
models [Yang, 1991]. Therefore, a nonhydrostatic
approach in improving or even redefining HOC
schemes and allowing for fully horizontally

inhomogeneous flows is necessary to treat inhomogeneous and highly anisotropic turbulent fields in
fine-resolution numerical models.

Another problem that goes to the heart of HOC assumptions for refining numerical model resolution is the
energy redistribution hypothesis of Rotta [1951], which is used in various versions of the Mellor-Yamada
schemes [Mellor and Yamada, 1982; Andrén, 1990]. This assumption pertains to the division of pressure-related
terms in the TKE equation into the nonlinear return-to-isotropy part (related to inertial interactions within
the turbulence field) and the “rapid” part (due to interactions between turbulence and mean variables).
Furthermore, isotropic turbulent eddies at the Kolmogorov scale are assumed to dissipate energy in the HOC
schemes so that the TKE dissipation, 𝜖, can be parameterized as a function of the ratio between TKE3∕2 and
a mixing length scale, l. With increasingly refined spatial resolution in numerical models for stratified flows
over complex terrain, it is not clear whether such isotropic dissipative eddies exist near the high-frequency
end of modeled turbulence spectrum under weak-wind conditions. The Kolmogorov inertial subrange may
not be fully realized if the relevant Re is less than 104. Nevertheless, Mellor and Yamada [1982] claim that the
assumptions of the hydrostatic state and the energy redistribution of Rotta [1951] are relatively less important
for modeling turbulent geophysical flows than defining a suitable, flexible, and robust l. Meanwhile, most l
formulations are rather empirical.
4.2.3. Mixing Length Scales
Typically, the height above the surface, z, and 𝑙 expressed in Obukhov length LO = −u3

∗0𝜃̄v∕(𝜅gw′𝜃′v 0) (u∗0 is
the surface friction velocity, 𝜃̄v is the virtual potential temperature, 𝜅 is the Von Karman constant, and w′𝜃′v 0 is
the surface heat flux) is used for characterizing turbulence near the surface [e.g., Mahrt et al., 2012]. However,
often in strongly stratified flows, the turbulent layer near the surface is extremely thin, for example, some-
times it is ≤ 1 m. Under this situation, l is less than z and turbulent eddies are decoupled from the surface.
So-called “z-less” formulations for l based on local turbulence rather than surface turbulence have been used.
One of these is lw , which is associated with the Ozmidov length lo (section 2.3.1). However, 𝜎w in lw is not eas-
ily obtained from either measurements or benchmark simulations of strongly stratified flows. As a result, 𝜎w is
often parameterized as a function of TKE1∕2 in numerical models. Another approach for l in a stably stratified
flow is to relate l to 𝜎𝜃 , where 𝜎𝜃 is the standard deviation of the potential temperature [Sorbjan and Balsley,
2008]. Often, the near-surface turbulence structure is governed by a low-level jet, in which turbulence is trans-
ported downward instead of being generated at the surface. In this situation, z or LO may not be relevant [van
der Avoird and Duynkerke, 1999]. Introducing 𝜎𝜃 can incorporate the main effects of the low-level jet and be
used to modify LO [Grisogono et al., 2007]. However, all of the above mentioned approaches for l are designed
for specific situations and not for a broad range of stably stratified flows.
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Grisogono [2010] attempted to formulate a general l valid for the neutral to stably stratified atmosphere. His
proposed l is based on lw with explicit inclusions of local TKE, wind shear, static stability, turbulent Prandtl
number, and Ri. This l, although it has not been thoroughly tested in numerical models, can potentially include
wavelike motions. Overall, improvement in formulating a generalized l beyond empirical or dimensional
arguments is certainly needed.
4.2.4. Empirical and Stochastic Approaches
To facilitate further understanding of the dynamics, analysis of observations in the literature has concentrated
on an ABL that is reasonably well defined in terms of vertical structure and turbulence. Many SABLs include
complex interactions between turbulence, short wavelike motions, low-frequency deep waves, and other
submeso motions. Waves and other submeso motions may not be separable in many situations.

The submeso motions appear as a stochastic mix, at least with our present understanding and observational
techniques. Then stochastic “turbulence” becomes forced by stochastic processes in contrast to stationary
SABL processes that obey similarity theory. As examples of stochastic formulation of the forcing, Farrell and
Ioannou [2008] introduced a stochastic wind field to study the response of sea surface waves, while Bakas and
Ioannou [2007] examined waves forced by randomly generated temperature and vorticity fluctuations.

Since submeso motions do not seem fully amenable to being obtained deterministically, progress in under-
standing wave-turbulence interactions could be made through empirical and stochastic parameterizations.
For example, the influence of submeso motions on turbulent fluxes could be accounted for when the bulk for-
mula for surface turbulent fluxes is used with a generalized velocity scale, which includes submeso motions
[Mahrt, 2008]. The drawback of this approach is that the empirical submeso velocity scale does not obey local
similarity valid only to equilibrium turbulence and is site dependent and, therefore, may not be universal.

Quantifying model uncertainty related to wave-turbulence interactions in the SABL and applying numerical
models to predict atmospheric transport and dispersion of hazardous materials should consider a probabilis-
tic approach using a sufficient number of suitably calibrated ensemble members [e.g., Kolczynski et al., 2009,
2011; Wendoloski et al., 2014]. The ensemble members can be created by varying the model initial condi-
tions, physical parameterizations, and grid resolutions. We should not rely solely on deterministic forecasts
for complex interactions between waves and turbulence within the SABL.
4.2.5. Potential Impacts of Parameterized Wave Drags in Large-Scale/Mesoscale Models
on Wave-Turbulence Interactions in the SABL
Current wave parameterizations in general circulation models are used to represent the drag produced by
unresolved waves at the tropopause and above. These parameterizations are in two categories: one for
subgrid-scale orographic IGWs [e.g., Palmer et al., 1986; McFarlane, 1987; Lott and Miller, 1997] and the other for
waves generated by all other sources such as convective and shear instabilities and geostrophic adjustment.
The second type is also known as nonorographic wave parameterization [e.g., Hines, 1997; Scinocca, 2003].

IGWs represented in the nonorographic IGW parameterizations are generally launched between midtropo-
sphere and the tropopause. Therefore, the upward propagating IGWs do not affect the ABL. However, there
are two well-known mechanisms that may lead to downward propagating IGWs toward the ABL. One is the
reflection of nonhydrostatic waves by the background flow; i.e., reflection of IGWs occurs at a height where
𝜔 = N + kU and m = 0. The reflected IGWs were examined by Scinocca [2002] using the IGW parameteriza-
tion developed by Warner and McIntyre [1996]. Scinocca [2002] found that a significant part of the spectrum
is reflected back but he did not explicitly examine the impact of the reflected IGWs on the ABL. Currently,
nonorographic wave parameterizations represent only the momentum flux divergence due to wave break-
ing and its impact on the background flow. However, the effects of wave generation on the background flow
may also be important in the ABL. These momentum flux divergences due to wave generation have not been
parameterized.

The other mechanism that may lead to downward propagating waves is through the so-called secondary
generation, which occurs when an upward propagating primary wave breaks. As the wave breaking produces
a sudden localized forcing to the flow, the response of the flow to the wave forcing has two components:
a geostrophic mode and inertio-gravity waves [Scavuzzo et al., 1998; Pulido and Thuburn, 2005]. These rela-
tively small scale inertio-gravity waves are the so-called secondary waves, which propagate both upward and
downward from the forcing region [Woods and Smith, 2010]. The importance of these downward propagating
secondary waves for the ABL momentum budget is as yet unknown and needs to be further investigated.

SUN ET AL. WAVE-TURBULENCE INTERACTIONS 979



Reviews of Geophysics 10.1002/2015RG000487

Current subgrid-scale orographic parameterizations account for low-level drag [Lott and Miller, 1997]. The
parameterization, which is operational in the European Centre for Medium-Range Weather Forecasts and the
Laboratoire de Météorologie Dynamique Zoom models, represents two drag mechanisms: one is produced
by the low-level flow blocked by the subgrid-scale orography and the other is produced by the flow over
the subgrid orography, which generates upward propagating IGWs. Comparing the drag resulting from this
scheme with the measured pressure drag, Lott and Miller [1997] concluded that the form drag contributes sig-
nificantly to the total mountain drag and improves the overall agreement with the drag obtained from the
measurements.
4.2.6. Improving ABL Parameterizations Using Data Assimilation
Current parameterization of the ABL requires a number of parameters that cannot be directly measured,
such as Ricr and eddy diffusivities. Objectively optimizing the values of these unknown parameters from
observations may improve the accuracy of the ABL schemes. A recent review of data assimilation techniques
for parameter estimation shows that the forecast skill of atmospheric models may be improved by optimizing
parameters of the physical schemes [Ruiz et al., 2013].

Hu et al. [2010] applied an ensemble Kalman filter technique to estimate two parameters in the ABL scheme
of the asymmetric convective model (version 2), which is implemented in WRF deterministic forecasts. The
two parameters—the turbulence eddy diffusivity for the daytime ABL and Ricr for the nighttime SABL—were
chosen as a result of a previous sensitivity study [Nielsen-Gammon et al., 2010] and were updated through
assimilation of wind profile observations. Hu et al. [2010] showed that the parameter optimization provides
more realistic wind profiles as a result of improved momentum mixing in the ABL. Tandeo et al. [2015] also
applied an ensemble Kalman filter technique to estimate optimal parameters for the subgrid-scale orographic
parameterization developed by Lott and Miller [1997]. Parameters related to the form drag (at the critical
mountain height) and the wave drag (the amplitude factor is related to the mountain sharpness and Ricr)
can be optimized using data assimilation. They also showed that data assimilation techniques are useful to
determine which parameters of the subgrid-scale orographic parameterization should be changed when the
model or orography resolution is changed.

Data assimilation techniques may also be helpful in determining the model error related to unresolved or
underresolved processes in an atmospheric model. Pulido and Thuburn [2005, 2008] applied a variational data
assimilation technique to determine the missing momentum forcing due to unresolved waves in the strato-
sphere. Similarly, the missing momentum flux in the ABL due to unresolved or underresolved waves could be
estimated using observations and data assimilation techniques. However, to our knowledge, studies for esti-
mating model errors due to unresolved motions and for combining observations and modeling in the ABL
through a variational or ensemble-based data assimilation technique have not yet been conducted.

4.3. Challenges for Waves and Wave-Turbulence Parameterizations in the SABL
Increasingly, observations reveal that the prevalence of propagating wavelike structures in the airflow, which
is characteristic of only single to several cycles of sinusoidal or irregular shapes, seems to be often associated
with wave-turbulence interactions and turbulence intermittency in the SABL [Mahrt, 2011]. These motions are
the most difficult to parameterize because their sources, lifetimes, and propagation mechanisms are generally
unknown and cannot be treated with a deterministic wave theory. It is unclear whether the turbulent mixing
associated with the wave motion can be parameterized as extended turbulence using local vertical gradients
of mean variables in the current framework of turbulence parameterizations. It is also unclear whether the
mixing length scale, which is one of the weakest elements in most turbulence parameterization schemes,
could possibly be extended to include some of the wave effects. Very little has been done so far to define a
mixing length that includes both turbulence and wave motions in the SABL. Since wave motions are nonlocal,
turbulence generated by wave motions is generally nonstationary and cannot be expected to obey similarity
theory [Finnigan, 1999]. Even if these wave motions can be included in a deterministic part of the mean flow,
turbulence generated by such waves is in approximate equilibrium only if the wave period is large compared
to the turbulence adjustment time scale.

Unlike research models, the current state-of-the-art operational mesoscale numerical models have grid spac-
ing too large to capture observed waves or submeso motions and their effects on the SABL [Grisogono, 2010].
Currently, the National Centers for Environmental Prediction is running the High-Resolution Rapid Refresh
model with a 3 km horizontal grid spacing and a ∼20 m deep lowest layer. Both growing misgivings in
applying MOST to the highly nonstationary SABL and the inadequacy of the target model resolution for future

SUN ET AL. WAVE-TURBULENCE INTERACTIONS 980



Reviews of Geophysics 10.1002/2015RG000487

Figure 6. A schematic of the scale regimes for transport near the
surface in weak-wind stable conditions. Hybrid motions (“hyb”) do
not have all the characteristics of turbulence, for example, the initial
stage of shear instability or nonlinear wave-wave interactions. “In situ
failure” denotes the difficulty of measuring vertical velocity variations
on larger time scales. “In situ ave” identifies the range of time scales
included in the turbulence flux calculation, which varies substantially
between studies. The dark blue color represents the turbulence,
while lighter and red colors denote nonturbulent motions. The
overlap of color points to the unclear boundary between the
turbulence and submeso motions [after Mahrt, 2010b] (with
permission from Elsevier).

numerical weather prediction and ensem-
ble systems to resolve waves in the SABL
imply that the effects of submeso motions
and wave-turbulence interactions will need
to be parameterized far into the future.

Another important parameterization issue
relates to the variable horizontal and verti-
cal resolutions in numerical models. Resolv-
ing part of wave motions in high-resolution
models introduces different problems com-
pared to climate and other low-resolution
models, which rely on a bulk parameteri-
zation for the entire ABL [e.g., Wyngaard,
2004]. It is not yet clear whether it is better
to increase the vertical resolution near the
surface for partially resolved small-scale
features, such as shallow cold pools in the
SABL, or to treat the layer below the low-
est model level at a coarse resolution
with a bulk parameterization. It has been
shown that predicting weak surface winds
and shallow drainage flows in the SABL
requires much finer resolutions than cur-
rently used in operational and research
mesoscale models [Seaman et al., 2012;

Hoover et al., 2015]. A finer vertical resolution would also be useful throughout, for example, the “regional
SABL” of a valley where waves are produced and interact with turbulence. However, it may be very difficult to
develop a parameterization when some but not all of the wave submeso motions are actually being resolved
in numerical models.

Currently, even exploratory research models provide only limited insights into the characteristics of submeso
motions, and major progress in the near future will probably have to rely on field observations [Hoover
et al., 2015]. However, the differences between the usual field experiment setup and the nature of numerical
models limit the applicability of observational analyses for parameterization development. Measurements
of small-scale processes are usually obtained at a single point on a tower, which only represents the land-
atmosphere interaction within the footprint of the tower [e.g., Cai et al., 2010], while variables at each model
grid point represent volume-averaged quantities. Taylor’s hypothesis for interpreting spatial structures from
time series is not valid for submeso motions, especially with weak winds [e.g., Mahrt et al., 2009]. The mean
wind itself might not be a relevant velocity scale for very weak winds [e.g., Mahrt, 2008]. Therefore, relating the
observed time series from single-point measurements to the horizontal space scale is generally not achiev-
able in the SABL (Figure 6). It is impossible to quantify the effects of spatial features of subgrid phenomena
from single-point measurements because the spatial scale of subgrid features cannot be precisely deter-
mined. A lack of spatial observations limits our current ability to parameterize subgrid submeso phenomena.
New model verification methods for submeso motions are also needed [e.g., Belušić and Güttler, 2010;
Suarez et al., 2014].

Various nonorographic wave parameterization schemes have been developed for the free atmosphere above
the ABL. Similar wave generation mechanisms are abundant in the SABL, but their parameterization is lack-
ing. Hasha et al. [2008] demonstrated the importance of horizontally inhomogeneous effects of waves on the
ambient flow, suggesting that parameterization of waves based on a single-column approach may not be
good enough for large-scale circulation models. To investigate intermittent turbulence, spatial and temporal
variations of wave motions are particularly important; therefore, parameterization of spatially varying waves
in the SABL is a further challenge.
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5. Summary

We have reviewed theories, observations, and numerical parameterizations that are relevant to wave-
turbulence interactions in stably stratified flows with a focus on the SABL. There is still a lack of understanding
of the evolution of wave dynamics in geophysical flows, partly due to inadequacy of existing observations.
Although wave motions may not be the only submeso motions that impact intermittent turbulence in the
SABL, considering the favorable conditions for wave motions in the SABL and a large body of wave theo-
ries, understanding wave-turbulence interactions can lead us to improve our understanding of turbulence
intermittency in the SABL.

Theoretical wave studies have progressed significantly from the linear inviscid wave theories of the 1970s.
Increasingly, theoretical wave studies include nonlinearity and interactions among turbulence, waves, and
background flows. However, physical understanding of wave generation and evolution in the turbulent
atmosphere beyond mathematical modes is still lacking. Part of the issue is the lack of understanding of
generation of turbulence and 3-D vortical motions of various scales under stably stratified conditions. In real-
ity, waves, turbulence, and 3-D vortical motions are closely related. Applying conservation laws such as energy
and momentum balances would add constraints in such a complex environment. Generation processes for
waves, turbulence, and possibly vortical motions in the stably stratified environment are related. Improved
understanding of their interactions is critical for weather and environmental forecasts.

Limited observations suggest that turbulent mixing occurs in spatially and temporally localized intermit-
tent patches and waves are common in the SABL. Due to a lack of theoretical guidance for wave motions
in a turbulent environment, most observations are compared to linear inviscid wave theory even though
assumptions used in the linear derivations are not valid in nature. Furthermore, observational investigations
of wave-turbulence interactions are currently constrained by limited spatial coverage of observations, which
hampers our investigation of wave number-frequency relationships of wave motions in the atmosphere. To
investigate wave-turbulence interactions, a large number of affordable instruments are required for adequate
temporal and spatial coverages, preferably in three dimensions. Future observations should consider net-
works of measurements on spatial scales suitable for studying wave motions and possible vortices and on
time scales suitable for studying the role of turbulence in wave-turbulence interactions. Observations of ver-
tical structure of wave motions and turbulence above a typical tower height could also provide important
information for understanding generation of waves and turbulence and their interactions and yet are often
not available, especially for the vertical structure of turbulence. With improved technology, spatial and tem-
poral observation networks need to take advantage of both ground and airborne platforms and both in situ
and remote sensing techniques.

Increasing computing power leads to higher-resolution numerical studies of wave motions and wave-
turbulence interactions. However, most nonlinear numerical simulations focus on turbulence generation in
the interior of the fluid without considering significant impacts of boundaries on wave-turbulence inter-
actions, which is unique for the SABL. The surface provides constraints in the momentum transfer, wave
dynamics, and thermodynamics. Currently, numerical models have difficulty simulating SABLs with strong
stable stratification partly due to subgrid parameterization. Even the highest-resolution DNS, for which sub-
grid parameterization is not needed, cannot simulate the SABL due to its low Re number compared to the
atmosphere. Using state-of-the-art models, careful comparison between observations and numerical model
results would extend our understanding of important physical processes of wave-turbulence interactions.
Including the effects of submeso motions such as wave motions on turbulence may improve numerical
parameterization of intermittent turbulence in the SABL.

Overall, understanding wave-turbulence interactions and intermittent turbulence largely relies on obser-
vations for validation. A focused field experiment to investigate wave-turbulence interactions in the SABL
should be doable and is crucial for advancing our understanding of waves, turbulence, and vortices in geo-
physical flows. Observations of wave formation and propagation and wave-turbulence interactions can also
inspire more refined theoretical wave studies with more realistic conditions. With better understanding of
wave-turbulence interactions, improving subgrid parameterization is possible. Due to the need for more
complete spatial and temporal coverage for the required observations, collaborative efforts to aggregate
resources and instruments may be necessary. Progress in wave-turbulence interactions in the SABL may
also shed light on better understanding of the upper atmosphere and oceans, where observations are less
accessible.
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